Артикул: 1090010

Раздел:Технические дисциплины (61595 шт.) >
  Математика (24535 шт.) >
  Математический анализ (17134 шт.) >
  Дифференциальные уравнения (2734 шт.)

Название:Найти поверхности, ортогональные векторным линиям векторного поля F, если
F = (2xy - 3yz)i + (x2 - 3xz)j - 3xyk

Изображение предварительного просмотра:

Найти поверхности, ортогональные векторным линиям векторного поля F, если <br /> F = (2xy - 3yz)i + (x<sup>2</sup> - 3xz)j - 3xyk

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

В задаче установить, имеются ли предельные циклы
x' = x5 + 3x3 + y2, y' = x3 + y5 + y3 + y

Решить интегральное уравнение второго рода
Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
x'' + x' + y'' - y =et
x' + 2x - y' + y = e-t
x(0) = y(0) = y'(0) = 0, x'(0) = 1

Найти свертку φ·f, где φ(t) = tα, f(t) = tβ, α > 0, β > 0, и ее изображение
Найти и исследовать особые точки данных уравнений и систем
Исследовать устойчивость нулевого решения, пользуясь условиями отрицательности действительных частей всех корней многочлена с действительными коэффициентами
xIV + 2x''' + 4x'' + 3x' + 2x = 0

Исследовать особые точки и изобразить графически семейство интегральных кривых в окрестности особой точки
x' = 3x - 4y, y' = x - 2y

Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
(2x'' - x' + 9x) - (y'' + y' + 3y) = 0
(2x'' + x' + 7x) - (y'' - y' + 5y) = 0
x(0) = x'(0) = 1, y(0) = y'(0) = 0

Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
x'' - x + y + z = 0
x + y'' - y + z = 0
x + y + z'' - z = 0
x(0) = 1, y(0) = z(0) = x'(0) = y'(0) = z'(0) = 0

Доказать, что если
1) уравнение (ax + by)dx + (mx + ky)dy = 0 не является уравнением в полных дифференциалах;
2) особая точка (0,0) этого уравнения - седло, то оно имеет непрерывный в окрестности начала координат интегрирующий множитель