Артикул: 1089928

Раздел:Технические дисциплины (61591 шт.) >
  Математика (24531 шт.) >
  Математический анализ (17130 шт.) >
  Дифференциальные уравнения (2730 шт.)

Название:Найти магнитные силовые линии, если напряженность поля B = (y, - 2x)

Изображение предварительного просмотра:

Найти магнитные силовые линии, если напряженность поля B = (y, - 2x)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение дифференциального уравнения
xy'' + y' = (y')2

Найти решение уравнения y'' + 2y' + y = 4sin(x) + 6cos(x)
Найти общее решение уравнения y'' + ay' + by = f(x) , используя характеристическое уравнение и метод вариации произвольных постоянных a = 0, b = 0, f(x) = sin2(x)
Найти общее решение или общий интеграл дифференциального уравнения
exdx+ytg(x)dy=0

Операторным методом найти решение задачи Коши

Указать вид частных решений для данных неоднородных уравнений, найти общее решение соответствующего однородного уравнения и найти общее решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.
y'' - 5y' + 6y = 4e-x

Решить уравнение: (x + y - 2)dx + (x - y + 4)dy = 0
Найти общее решение или общий интеграл дифференциального уравнения
(x2 - 6xy)dy - (x2 + xy - 5y2)dx = 0

Найти частное решение линейного дифференциального уравнения второго порядка, удовлетворяющее заданным начальным условиям
y'' + 4y = 4x - 8, y(0) = -2, y'(0) = 1

Найти общее решение линейного дифференциального уравнения первого порядка
y' - (y/x) = x