Артикул: 1089235

Раздел:Технические дисциплины (61401 шт.) >
  Математика (24416 шт.) >
  Математический анализ (17016 шт.) >
  Дифференциальные уравнения (2618 шт.)

Название:Проинтегрировать дифференциальное уравнение и найти частное решение там, где заданы начальные условия
y'' + ln(y'') - x = 0, при x0 = 1, y0 = 1, y'0 = 2

Изображение предварительного просмотра:

Проинтегрировать дифференциальное уравнение и найти частное решение там, где заданы начальные условия <br /> y'' + ln(y'') - x = 0, при  x<sub>0</sub> = 1, y<sub>0</sub> = 1, y'<sub>0</sub> = 2

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение системы уравнений
Найти решения системы удовлетворяющие начальным условиям: x(0) = y(0) = 0; x'(0) = υ0x; y'(0) = υ0y (k и g - постоянные величины)
Найти общее решение уравнения
y'' + y = 5sin(2x)

Решить уравнение
y + √(x2 + y2) - xy' = 0

Найти общее решение уравнения
y'' - 8y' + 7y = 3x2 + 7x + 8

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Решить дифференциальное уравнение
(x+y)dx+(y-x)dy=0

Найти общее решение уравнения
y'' - 2y' + 4y = (x + 2)e3x

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.