Артикул: 1089201

Раздел:Технические дисциплины (61401 шт.) >
  Математика (24416 шт.) >
  Математический анализ (17016 шт.) >
  Дифференциальные уравнения (2618 шт.)

Название:Найти особые решения, не интегрируя самого уравнения
yy'2 + y'(x - y) - x = 0

Изображение предварительного просмотра:

Найти особые решения, не интегрируя самого уравнения  <br /> yy'<sup>2</sup> + y'(x - y) - x = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти частное решение дифференциального уравнения при данных начальных условиях
y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 1

Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1

Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Алгоритм решения дифференциальных уравнений, допускающие понижение порядка производной
(Ответ на теоретический вопрос – 1 страница Word)
Найти общее решение уравнения
y'' + 4y = 3sin(2x)

Найти общее решение линейного дифференциального уравнения первого порядка методом Бернулли и методом Лагранжа. y'+ytg(x)=cos⁡(x)
Найти общее решение уравнения Эйлера
(3x + 1)2y'' - 2(3x + 1)y' - 12y = 0

Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.