Артикул: 1089199

Раздел:Технические дисциплины (61401 шт.) >
  Математика (24416 шт.) >
  Математический анализ (17016 шт.) >
  Дифференциальные уравнения (2618 шт.)

Название:Найти особые решения, не интегрируя самого уравнения
y2y'2 - (y3y'/x) + a2 = 0

Изображение предварительного просмотра:

Найти особые решения, не интегрируя самого уравнения  <br /> y2y'<sup>2</sup> - (y<sup>3</sup>y'/x) + a<sup>2</sup> = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение уравнения
y'' + y = (3x + 2)sin(2x) + (x2 + x + 2)cos(2x)

Найти общее решение уравнения
x2y'' + 5xy' + 3y = 0

Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1

Найти общее решение уравнения Эйлера
(3x + 1)2y'' - 2(3x + 1)y' - 12y = 0

Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5

Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Найти общее решение системы
Найти общее решение системы уравнений
Найти общее решение уравнения
y'' + y = 5sin(2x)