Артикул: 1089198

Раздел:Технические дисциплины (61401 шт.) >
  Математика (24416 шт.) >
  Математический анализ (17016 шт.) >
  Дифференциальные уравнения (2618 шт.)

Название:Найти особые решения, не интегрируя самого уравнения
y'2 + (x + (x3/2)y' - (1 + x2)y - (x4/16) = 0

Изображение предварительного просмотра:

Найти особые решения, не интегрируя самого уравнения  <br /> y'<sup>2</sup> + (x + (x<sup>3</sup>/2)y' - (1 + x2)y - (x<sup>4</sup>/16) = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти частные решения, удовлетворяющие начальным условиям:
−3y′′+9y′−6y=−4ex; y(0)=y′(0)=−4

Найти общее решение уравнения
y'' + y = 5sin(2x)

Найти общее решение уравнения
y'' + y = (3x + 2)sin(2x) + (x2 + x + 2)cos(2x)

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Найти общее решение уравнения Эйлера
(3x + 1)2y'' - 2(3x + 1)y' - 12y = 0

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Найти общее решение уравнения
y'' - 8y' + 7y = 3x2 + 7x + 8

Алгоритм решения дифференциальных уравнений, допускающие понижение порядка производной
(Ответ на теоретический вопрос – 1 страница Word)
Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.