Артикул: 1089189

Раздел:Технические дисциплины (61401 шт.) >
  Математика (24416 шт.) >
  Математический анализ (17016 шт.) >
  Дифференциальные уравнения (2618 шт.)

Название:Для уравнения y' = x -y2 с начальным условием y(0) = 0 построить третье приближение к решению и оценить его погрешность при 0 ≤ x ≤ 0,5

Изображение предварительного просмотра:

Для уравнения y' = x -y<sup>2</sup> с начальным условием  y(0) = 0 построить третье приближение к решению и оценить его погрешность при 0 ≤ x ≤ 0,5

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Найти частные решения, удовлетворяющие начальным условиям:
−3y′′+9y′−6y=−4ex; y(0)=y′(0)=−4

Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1

Найти общее решение уравнения
y'' + y = 5sin(2x)

Найти закон движения точки, на которую действуют две силы: 1) сила притяжения к неподвижному центру, пропорциональная расстоянию точки от этого центра P = -k2mx и 2) периодическая сила, определяемая формулой F = Amcos(pt)Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти общее решение дифференциального уравнения
y'' + 4y' + 4y = 0

Найти общее решение системы уравнений
Найти общее решение уравнения
x2y'' + 5xy' + 3y = 0

Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.