Артикул: 1089138

Раздел:Технические дисциплины (61389 шт.) >
  Математика (24406 шт.) >
  Математический анализ (17006 шт.) >
  Дифференциальные уравнения (2608 шт.)

Название:Найти решение уравнения
y'5 - 8y'4 + 9y'3 - 7y'2 + 6y' + 1 = 0

Изображение предварительного просмотра:

Найти решение уравнения  <br /> y'<sup>5</sup> - 8y'<sup>4</sup> + 9y'<sup>3</sup> - 7y'<sup>2</sup> + 6y' + 1 = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение системы
Найти закон движения точки, на которую действуют две силы: 1) сила притяжения к неподвижному центру, пропорциональная расстоянию точки от этого центра P = -k2mx и 2) периодическая сила, определяемая формулой F = Amcos(pt)
Найти общее решение уравнения
y'' - 2y' + 10y = xcos(2x)

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1

Найти общее решение уравнения
y'' - 2y' + 4y = (x + 2)e3x

Найти общее решение системы
y'' = 4y - 2z
z'' = y + z
(независимая переменная х)

Линейные однородные дифференциальные уравнения второго порядка. Характеристическое уравнение. Виды общего решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами
(Ответ на теоретический вопрос – 1 страница Word)
Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Алгоритм решения дифференциальных уравнений, допускающие понижение порядка производной
(Ответ на теоретический вопрос – 1 страница Word)