Артикул: 1089137

Раздел:Технические дисциплины (61389 шт.) >
  Математика (24406 шт.) >
  Математический анализ (17006 шт.) >
  Дифференциальные уравнения (2608 шт.)

Название:Найти решение уравнения x3 + y'3 - 3xy' = 0

Изображение предварительного просмотра:

Найти решение уравнения  x<sup>3</sup> + y'<sup>3</sup> - 3xy' = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить уравнение
y + √(x2 + y2) - xy' = 0

Найти общее решение системы
Найти общее решение системы уравнений
Найти общее решение уравнения
y'' - 2y' + 4y = (x + 2)e3x

Решить дифференциальное уравнение
y'' + 9y = 6e3x
Линейные однородные дифференциальные уравнения второго порядка. Характеристическое уравнение. Виды общего решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами
(Ответ на теоретический вопрос – 1 страница Word)
Найти общее решение уравнения
y'' - 8y' + 7y = 3x2 + 7x + 8

Найти частные решения, удовлетворяющие начальным условиям:
−3y′′+9y′−6y=−4ex; y(0)=y′(0)=−4

Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1