Артикул: 1089127

Раздел:Технические дисциплины (61389 шт.) >
  Математика (24406 шт.) >
  Математический анализ (17006 шт.) >
  Дифференциальные уравнения (2608 шт.)

Название:Решить уравнение xy' + 3y + y2 = x2

Изображение предварительного просмотра:

Решить уравнение xy' + 3y + y<sup>2</sup> = x<sup>2</sup>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Найти общее решение уравнения
y'' + y = (3x + 2)sin(2x) + (x2 + x + 2)cos(2x)

Найти общее решение уравнения
y'' - 2y' + 10y = xcos(2x)

Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Найти общее решение уравнения
y'' + y = 5sin(2x)

Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5

Найти общее решение уравнения
x2y'' + 5xy' + 3y = 0

Найти общее решение уравнения Эйлера
(3x + 1)2y'' - 2(3x + 1)y' - 12y = 0

Найти решения системы удовлетворяющие начальным условиям: x(0) = y(0) = 0; x'(0) = υ0x; y'(0) = υ0y (k и g - постоянные величины)