Артикул: 1089118

Раздел:Технические дисциплины (61389 шт.) >
  Математика (24406 шт.) >
  Математический анализ (17006 шт.) >
  Дифференциальные уравнения (2608 шт.)

Название:Решить уравнение y3dx + 2(x2 - xy2)dy = 0

Изображение предварительного просмотра:

Решить уравнение y<sup>3</sup>dx + 2(x<sup>2</sup> - xy<sup>2</sup>)dy = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти решения системы удовлетворяющие начальным условиям: x(0) = y(0) = 0; x'(0) = υ0x; y'(0) = υ0y (k и g - постоянные величины)
Найти общее решение системы уравнений
Найти частное решение дифференциального уравнения при данных начальных условиях
y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 1

Найти общее решение системы
y'' = 4y - 2z
z'' = y + z
(независимая переменная х)

Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Решить уравнение
y + √(x2 + y2) - xy' = 0

Найти общее решение уравнения
y'' - 2y' + 10y = xcos(2x)

Найти общее решение дифференциального уравнения
y'' + 4y' + 4y = 0

Алгоритм решения дифференциальных уравнений, допускающие понижение порядка производной
(Ответ на теоретический вопрос – 1 страница Word)
Найти общее решение уравнения
y'' - 2y' + 4y = (x + 2)e3x