Артикул: 1089071

Раздел:Технические дисциплины (61296 шт.) >
  Математика (24313 шт.) >
  Математический анализ (16913 шт.) >
  Дифференциальные уравнения (2515 шт.)

Название:Решить уравнение (y/√(y2 + 1))dy/dx + √(y2 + 1) = x2 + 1

Изображение предварительного просмотра:

Решить уравнение (y/√(y<sup>2</sup> + 1))dy/dx + √(y<sup>2</sup> + 1) = x<sup></sup>2 + 1

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение дифференциального уравнения
y'' + 4y' + 4y = 0

Найти общее решение уравнения
y'' + y = 5sin(2x)

Найти общее решение уравнения Эйлера
(3x + 1)2y'' - 2(3x + 1)y' - 12y = 0

Найти общее решение уравнения
x2y'' + 5xy' + 3y = 0

Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Найти общее решение уравнения
y'' + 4y = 3sin(2x)

Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Решить дифференциальное уравнение
(x+y)dx+(y-x)dy=0

Найти общее решение системы