Артикул: 1089070

Раздел:Технические дисциплины (61296 шт.) >
  Математика (24313 шт.) >
  Математический анализ (16913 шт.) >
  Дифференциальные уравнения (2515 шт.)

Название:Решить уравнение 1/y(dy/dx) + (2 - x)ln(y) = x(e-2x + e(x2/2))

Изображение предварительного просмотра:

Решить уравнение 1/y(dy/dx) + (2 - x)ln(y) = x(e<sup>-2x</sup> + e<sup>(x<sup>2</sup>/2)</sup>)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5

Найти общее решение уравнения
y'' + 4y = 3sin(2x)

Найти общее решение уравнения
y'' - 8y' + 7y = 3x2 + 7x + 8

Найти общее решение уравнения
x2y'' + 5xy' + 3y = 0

Найти общее решение системы
y'' = 4y - 2z
z'' = y + z
(независимая переменная х)

Найти общее решение дифференциального уравнения
y'' + 4y' + 4y = 0

Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Найти частные решения, удовлетворяющие начальным условиям:
−3y′′+9y′−6y=−4ex; y(0)=y′(0)=−4

Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2