Артикул: 1089046

Раздел:Технические дисциплины (61296 шт.) >
  Математика (24313 шт.) >
  Математический анализ (16917 шт.) >
  Дифференциальные уравнения (2519 шт.)

Название:Решить уравнение (6x + y - 1)dx + (4x + y - 2)dy = 0

Изображение предварительного просмотра:

Решить уравнение (6x + y - 1)dx + (4x + y - 2)dy = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.

Найти общее решение уравнения
y'' - 2y' + 10y = xcos(2x)

Найти частное решение дифференциального уравнения при данных начальных условиях
y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 1

Найти закон движения точки, на которую действуют две силы: 1) сила притяжения к неподвижному центру, пропорциональная расстоянию точки от этого центра P = -k2mx и 2) периодическая сила, определяемая формулой F = Amcos(pt)Найти общее решение уравнения
y'' + y = (3x + 2)sin(2x) + (x2 + x + 2)cos(2x)

Найти общее решение уравнения
y'' - 2y' + 4y = (x + 2)e3x

Решить дифференциальное уравнение
y'' + 9y = 6e3x
Найти общее решение уравнения
y'' + 4y = 3sin(2x)

Решить дифференциальное уравнение
(x+y)dx+(y-x)dy=0