Артикул: 1089043

Раздел:Технические дисциплины (61296 шт.) >
  Математика (24313 шт.) >
  Математический анализ (16917 шт.) >
  Дифференциальные уравнения (2519 шт.)

Название:Решить уравнение (xyex/y + y2)dx - x2ex/ydy = 0

Изображение предварительного просмотра:

Решить уравнение (xye<sup>x/y</sup> + y<sup>2</sup>)dx - x<sup>2</sup>e<sup>x/y</sup>dy = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти частное решение дифференциального уравнения при данных начальных условиях
y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 1

Линейные однородные дифференциальные уравнения второго порядка. Характеристическое уравнение. Виды общего решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами
(Ответ на теоретический вопрос – 1 страница Word)
Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5

Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Найти общее решение системы
Найти общее решение уравнения
y'' - 2y' + 4y = (x + 2)e3x

Решить дифференциальное уравнение
y'' + 9y = 6e3x
Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.