Артикул: 1089041

Раздел:Технические дисциплины (61296 шт.) >
  Математика (24313 шт.) >
  Математический анализ (16917 шт.) >
  Дифференциальные уравнения (2519 шт.)

Название:Решить уравнение xydx + (y2 - x2)dy = 0, M(1,1)

Изображение предварительного просмотра:

Решить уравнение xydx + (y<sup>2</sup> - x<sup>2</sup>)dy = 0, M(1,1)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение уравнения
x2y'' + 5xy' + 3y = 0

Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Найти решения системы удовлетворяющие начальным условиям: x(0) = y(0) = 0; x'(0) = υ0x; y'(0) = υ0y (k и g - постоянные величины)
Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1

Решить дифференциальное уравнение
(x+y)dx+(y-x)dy=0

Найти общее решение системы
Найти общее решение линейного дифференциального уравнения первого порядка методом Бернулли и методом Лагранжа. y'+ytg(x)=cos⁡(x)
Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти общее решение уравнения
y'' + y = (3x + 2)sin(2x) + (x2 + x + 2)cos(2x)

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2