Артикул: 1085660

Раздел:Технические дисциплины (60193 шт.) >
  Математика (23615 шт.) >
  Математический анализ (16348 шт.) >
  Кратные и криволинейные интегралы (1142 шт.)

Название или условие:
Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченного данными поверхностями. Плотность тела принять равной 1.
z2 = x2+ y2, z = 3 Oz

Изображение предварительного просмотра:

Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченного данными поверхностями. Плотность тела принять равной 1.  <br /> z<sup>2</sup> = x<sup>2</sup>+ y<sup>2</sup>, z = 3  Oz

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
Вычислить, если А(0; -1), В(3; 3).
Задача 9.Вычислить криволинейный интеграл. Сделать чертёж.
Вариант 5

Вычислить двойной интеграл, если область G ограничена эллипсом (x2 + 4) + (y2/9) = 1 и осями координат. Интеграл:
Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
Вычислить двойной интеграл ∫∫D x/y·dx·dy , где D ограничена линиями y=ex, y=e2x, x=2.
Изменить порядок интегрирования. Область интегрирования изобразить на чертеже
Вычислить криволинейный интеграл первого рода по указанной кривой L
Найти площадь цилиндрической поверхности F(x,y)=0, ограниченной снизу поверхностью z=f1(x,y) и сверху – поверхностью z=f2(x,y), если:
F(x,y)=y2-4/9·(x-1)3, f1=0, f2=2-√x

Вычислить