Артикул: 1070744

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название:Динамическое исследование движения системы с одной степенью свободы (Вариант 211)

Описание:
Механическая система состоит из четырех цилиндров, связанных между собой нерастяжимыми тросами. Каток 1 массы m1=4∙m mрадиуса r1=(3r/2)r катится без скольжения по неподвижной плоскости, наклоненной под углом α = 30° к горизонту. Блоки 2 и 3 – одинаковые сплошные однородные сдвоенные цилиндры массы m2=m3=20∙m с внутренним радиусом r2=r3=r и наружным радиусом R2=R3=2r. Даны радиусы инерции цилиндров
ρ2232=(3r2)/2
Величины m и r считаются заданными.
Система приводится в движение из состояния покоя моментом
M=M0∙((t+2)/(t+1))
приложенным к катку 1.
1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение, служащее для определения зависимости s(t) координаты точки А от времени - дифференциальное уравнение движения системы.
2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в
дифференциальной форме.
3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
4. Убедившись в совпадении результатов, полученных четырьмя
независимыми способами, проинтегрировать дифференциальное уравнение движения системы, получив зависимость s(t) координаты точки А от времени.
5. Определить натяжения тросов в начальный момент времени (при t = 0).

Подробное решение в WORD - 9 страниц

Изображение предварительного просмотра:

Динамическое исследование движения системы с одной степенью свободы (Вариант 211)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Динамика материальной точки
Задана сила F = 5eu/9 действующая на тело и его масса m = 90. Начальные условия: t = 0, υ0=5. Определить когда скорость достигнет значения 10?
Система, показанная на рисунках 1.1-1.5, состоит из следующих элементов. Грузы массами m1 и m2 движутся поступательно. К грузам прикреплены невесомые нерастяжимые нити, перекинутые или намотанные на блоки массами m3 и m4, которые могут без трения вращаться вокруг горизонтальных осей. Блок массой m3 – сплошной цилиндр, а блок массой m4 – ступенчатый цилиндр с радиусами ступеней r4 и R4 и одинаковой высотой (рисунок 1.6). При движении по блокам нити не проскальзывают, участки нитей для тел на наклонных плоскостях параллельны этим плоскостям, коэффициент трения тел о любую плоскость равен μ. Система начинает движение из состояния покоя. Считая, что все нити и участки плоскостей имеют достаточную длину, выполнить следующие задания:
1. Найти ускорения грузов массами m1 и m2 и угловые ускорения блоков ε3, ε4. Принять r3=r4.
2. Найти силы натяжения всех нитей.
3. Используя кинематические формулы, найти скорости грузов, угловые скорости блоков и пути, пройденные грузами спустя время τ после начала движения.
4. Используя закон изменения механической энергии, найти скорости грузов и угловые скорости блоков в тот момент, когда пути, пройденные грузами, составят значения, найдены в п. 3.
Вариант 16

Динамика материальной точки
Задана сила F =√(2t+1), действующая на тело и его масса m = 5. Начальные условия: t = 0, υ0=5. Найти υ при t = 6
Дано: O1Д = 60 см, АО = 20 см, М = 100 Н·м.
Найти Р
(задача Д-14, вариант 12)

Дано: Р = 200 Н, h = 0,04 м, ОС/ОА = 4/5. Применяя принцип возможных перемещений и пренебрегая силами сопротивления, определить коэффициент жесткости пружины
(задача Д-14, вариант 4)

Задача 4.2 (вариант 3)
Динамика плоского движения
К барабану лебедки (1) приложен момент M(t). Второй конец троса намотан на внутренний барабан колеса (2), которое катится без проскальзывания по наклонной плоскости. Барабан лебедки – однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции J2 = m2ρ22. Определить закон вращения лебедки φ2(t). В начальный момент система была в покое. Задачу решить двумя способами:
А) С помощью фундаментальных законов (1) и (2)
В) С помощью теоремы об изменении кинетической энергии (3)
Дано: m1= 4.0 кг, m2 = 4.0 кг, R1 = 0.3 м, R2 = 0.3 м, r2 = 0.2 м, ρ = 0.25 м, α = 30°, М = 3-0.2t Н·м
Найти: φ2=φ2(t)

Дано: OA = 40 cм, M = 400 Н·м.
Найти Р
(задача Д-14, вариант 22)

Дано: OВ = АВ, С = 180 Н/см, h = 2 см
Найти Р
(задача Д-14, вариант 27)

Дано: P1 = 15 см, P2 = 40 см, P3 = 20 см, OA = 100 см, Q = 2·103 H, h = 4 см.
Найти: С
(задача Д-14, вариант 10)

Дифференциальные уравнения движения точки. Решение задач динамики точки. (реферат)