Артикул: 1068275

Раздел:Технические дисциплины (53982 шт.) >
  Теоретическая механика (теормех, термех) (1457 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=90t, y=1500-4,9t2
Найти: Т, L, υ, а.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Даны уравнения движения груза, сброшенного с самолета. 	<br />Определить: 	<br />1) время Т и дальность L полета груза; 	<br />2) скорость груза в момент падения; 	<br />3) ускорение груза. 	<br />Дано:  x=90t, y=1500-4,9t<sup>2</sup>	<br />Найти: Т, L, υ, а.

Вы можете оплатить, используя банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множеством других способов

Похожие задания:

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x = 6sin(π/6)t-8, y = 10+8sin(π/6)t

Даны уравнения движения точки:
x = 2 (еt + e-t); y = 2(et-e-t) (х, у – м; t – с ).
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t = 1 с.
3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.

ЗАДАНИЕ К1-21
Дано: уравнения движения точки в плоскости ху: x = 2-3cos(m/6), y = -6cos(m/3); t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1.

По заданным уравнениям движения точки M установить вид ее траектории и для момента времени t=t1 (c) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.
Вариант 63

Даны уравнения движения точки:
x = 5cos 3/2πt-2,5 y = 5sin 3/2πt+5 (x,y-см, t -c)
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на ее траектории.
3. Найти закон движения точки по траектории s = s(t), принимая за начало отсчета расстояний начальное положение точки.
4. Определить время T прохождения точкой полной окружности.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки. Дано: x=8sin π/4t-4, y=6sin π/4 t+3

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x = 6-6sin(π/4)t, y = 3-6cos(π/4)t

Дан закон движения точки по окружности радиусом r.
Определить:
1) скорость и ускорение точки при t=0 и t=10c;
2) моменты остановки точки
3) путь, пройденный точкой за 10 секунд
Дано: S=2t3-33t2+144t+20, R=1i, t=0, t=10c
Найти: V0, a0, V, a, t1, t2, П

Даны уравнения движения точки (рис) x = 4 - 4sin (π/6)t, y = 2 - 4cos (π/6)t
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x = 8-8sin(π/2)t, y =4-8cos(π/2)t