Артикул: 1068266

Раздел:Технические дисциплины (53982 шт.) >
  Теоретическая механика (теормех, термех) (1457 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=60t, y=2000-4,9t2
Найти: Т, L, υ, а.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Даны уравнения движения груза, сброшенного с самолета. <br />Определить: <br />1) время Т и дальность L полета груза; <br />2) скорость груза в момент падения; <br />3) ускорение груза. <br />Дано: x=60t, y=2000-4,9t<sup>2</sup><br />Найти: Т, L, υ, а.

Вы можете оплатить, используя банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множеством других способов

Похожие задания:

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x = 8-8sin(π/2)t, y =4-8cos(π/2)t

Даны уравнения движения точки.
1. Определить уравнение траектории точки .
2. Определить скорость и ускорение точки при t = 0 и t = 1c
3. . Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.
Дано: x = 3t, y = 2cosπt, t = 0, t = 1c.
Найти: x(y), V0, Vt, a0, at

Задача 7.8.20 из сборника Кепе.
Точка движется по криволинейной траектории с касательным ускорением aτ = 2 м/с2. Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t = 2 с, когда радиус кривизны траектории ρ = 4 м, если при t0 = 0 скорость точки v0 = 0
Дан закон движения точки по окружности радиусом r.
Определить:
1) скорость и ускорение точки при t=0 и t=10c;
2) моменты остановки точки
3) путь, пройденный точкой за 10 секунд
Дано: S=2t3-33t2+144t+20, R=1i, t=0, t=10c
Найти: V0, a0, V, a, t1, t2, П

Даны уравнения движения точки:
x = 1 - 2cos2 (π/4)t, y=6-2cos2(π/4)t (x,y,-мбt-c)
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = s(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.

ЗАДАНИЕ К1-68
Дано: уравнения движения точки в плоскости ху: x = 2t, y = 2-t2; t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=8sin π/2 t-4, y=8cos π/2 t + 4

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки. Дано: x=8sin π/4t-4, y=6sin π/4 t+3

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т в которое точка пройдет полную окружность. Дано: x=4sin π/3 t-2, y=4cos π/3 t+2

Движение точки М происходит по траектории, показанной на рис. П.6, а согласно заданному графику изменения скорости (рис. П.6, б). Движение точки начинается в момент времени t0 = 0 из положения М0 (ОМ0 = 25 м).
Определить последовательные положения точки на траектории в выделенные на рис. П.6, б моменты времени, описать основные особенности движения точки и вычислить путь, пройденный точкой за промежуток времени t0 = 0 до t5 = 12 с.