Артикул: 1068263

Раздел:Технические дисциплины (53982 шт.) >
  Теоретическая механика (теормех, термех) (1457 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т в которое точка пройдет полную окружность. Дано: x=4sin π/3 t-2, y=4cos π/3 t+2

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Даны уравнения движения точки. 	<br />1. Определить уравнение траектории и построить ее. 	<br />2. Определить начальное положение точки на траектории. 	<br />3. Указать моменты времени, когда точка пересекает оси координат. 	<br />4. Найти закон движения точки по траектории  s=φ(t), принимая за начало отсчета расстояний начальное положение точки. 	<br />5. Определить время Т в которое точка пройдет полную окружность.  Дано: x=4sin π/3 t-2, y=4cos π/3 t+2

Вы можете оплатить, используя банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множеством других способов

Похожие задания:

Даны уравнения движения точки:
x = 2 (еt + e-t); y = 2(et-e-t) (х, у – м; t – с ).
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t = 1 с.
3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки. Дано: x=8sin π/4t-4, y=6sin π/4 t+3

Задача 7.8.20 из сборника Кепе.
Точка движется по криволинейной траектории с касательным ускорением aτ = 2 м/с2. Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t = 2 с, когда радиус кривизны траектории ρ = 4 м, если при t0 = 0 скорость точки v0 = 0
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x = 6sin(π/6)t-8, y = 10+8sin(π/6)t

Даны уравнения движения точки.
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t = 0 и t = 1c
3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.
Дано: x = 3sin(π/2)t, y = 4cos(π/2)t, t = 0, t = 1c

Даны уравнения движения точки (рис) x = 4 - 4sin (π/6)t, y = 2 - 4cos (π/6)t
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=8sin π/2 t-4, y=8cos π/2 t + 4

Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=90t, y=1500-4,9t2
Найти: Т, L, υ, а.

Закон движения точки М в плоскости ху задан уравнениями x = 4 sin(πt/ 6) -1, y = 3cos (πt/ 6) + 2 (где х, у – в сантиметрах, t – в секундах). Определить: уравнение траектории точки; для момента времени t1 = 2 с найти скорость и ускорение точки, а также ее касательное и нормальное ускорение и радиус кривизны в соответствующей точке траектории. Траекторию и найденные векторные величины изобразить на чертеже.Точка В движется в плоскости xy. Закон движения точки задан в табл.1 зависимостями x = f1(t), y = f2(t) , где x и y выражены в сантиметрах, t – в секундах. Найти уравнение траектории точки и построить ее на чертеже. Для момента времени t1 определить и показать на чертеже: а) положение точки на траектории; б) вектор ее скорости; в) векторы касательного, нормального и полного ускорений, и г) радиус кривизны траектории в соответствующей точке.