Артикул: 1068027

Раздел:Технические дисциплины (53982 шт.) >
  Теоретическая механика (теормех, термех) (1457 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Задача 7.8.20 из сборника Кепе.
Точка движется по криволинейной траектории с касательным ускорением aτ = 2 м/с2. Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t = 2 с, когда радиус кривизны траектории ρ = 4 м, если при t0 = 0 скорость точки v0 = 0

Описание:
Подробное решение

Поисковые тэги: Задачник Кепе

Вы можете оплатить, используя банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множеством других способов

Похожие задания:

Закон движения точки М в плоскости ху задан уравнениями x = 4 sin(πt/ 6) -1, y = 3cos (πt/ 6) + 2 (где х, у – в сантиметрах, t – в секундах). Определить: уравнение траектории точки; для момента времени t1 = 2 с найти скорость и ускорение точки, а также ее касательное и нормальное ускорение и радиус кривизны в соответствующей точке траектории. Траекторию и найденные векторные величины изобразить на чертеже.Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3sin (π/6)t-3, y=5+4sin(π/6)t

Движение точки М происходит согласно уравнениям (х, у – в м, t – с):
х = 2cos(2πt) ; y = 2 − sin2 (πt) .
Определить траекторию точки; проанализировать движение точки по траектории и определить ее скорость и ускорение в моменты времени t0 = 0 c и t1 = 1 c.
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=10-10sin (3π/2)t, y=5-10cos(3π/2)t
Точка В движется в плоскости xy. Закон движения точки задан в табл.1 зависимостями x = f1(t), y = f2(t) , где x и y выражены в сантиметрах, t – в секундах. Найти уравнение траектории точки и построить ее на чертеже. Для момента времени t1 определить и показать на чертеже: а) положение точки на траектории; б) вектор ее скорости; в) векторы касательного, нормального и полного ускорений, и г) радиус кривизны траектории в соответствующей точке.
Дан закон движения точки по окружности радиусом r.
Определить:
1) скорость и ускорение точки при t=0 и t=10c;
2) моменты остановки точки
3) путь, пройденный точкой за 10 секунд
Дано: S=2t3-33t2+144t+20, R=1i, t=0, t=10c
Найти: V0, a0, V, a, t1, t2, П

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т в которое точка пройдет полную окружность. Дано: x=4sin π/3 t-2, y=4cos π/3 t+2

ЗАДАНИЕ К1-68
Дано: уравнения движения точки в плоскости ху: x = 2t, y = 2-t2; t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1.

Даны уравнения движения точки:
x = 5cos 3/2πt-2,5 y = 5sin 3/2πt+5 (x,y-см, t -c)
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на ее траектории.
3. Найти закон движения точки по траектории s = s(t), принимая за начало отсчета расстояний начальное положение точки.
4. Определить время T прохождения точкой полной окружности.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s = φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x = 6sin(π/6)t-8, y = 10+8sin(π/6)t