Артикул: 1067638

Раздел:Технические дисциплины (53982 шт.) >
  Теоретическая механика (теормех, термех) (1457 шт.) >
  Кинематика (483 шт.) >
  Сложное движение точки (58 шт.)

Название:По трубке, изогнутой в форме окружности радиуса R = 20 см (рис), течет жидкость с постоянной относительно трубки скоростью 40 см/с. Трубка вращается вокруг оси О с постоянной угловой скоростью ω = 1 1/с. Найти абсолютную скорость частицы жидкости, когда она занимает в трубке положение, определяемое углом ОСМ, равным 120° . Направления вращения трубки и течения жидкости (по трубке) – против хода стрелки часов.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

По трубке, изогнутой в форме окружности радиуса R = 20 см (рис), течет жидкость с постоянной относительно трубки скоростью 40 см/с. Трубка вращается вокруг оси О с постоянной угловой скоростью ω = 1 1/с. Найти абсолютную скорость частицы жидкости, когда она занимает в трубке положение, определяемое углом ОСМ, равным 120° . Направления вращения трубки и течения жидкости (по трубке) – против хода стрелки часов.

Вы можете оплатить, используя банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множеством других способов

Похожие задания:

Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/c.
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано:R=20см, ω= 3 1/с, h = 10 см
Найти: Va, VT

Дано: ОМ0 = 50 см; ω1 = 3,2 рад/с; ε1 = -4,7 рад/с, ММ0 = 10 см.
Найти: ωА, εА, vм, εм.
ОС = √502-252=43,3 см.

Кольцо радиуса R = 15 см жестко соединено стержнем ДО с валом О, ось вращения которого перпендикулярна плоскости рисунка. Вал О вращается по закону φ = 3t2-4t. Из точки А по кольцу движется точка М так, что расстояние АМ изменяется по закону
s = AM = 20√3·π·sin(πt/3) см.
Определить абсолютное ускорение точки М в момент времени t1 = 4/3 с, если в этот момент кольцо расположено так, как указано на рисунке. Принять l = 20 см.

Прямоугольная пластинка (рис. К4.1) вращается вокруг неподвижной оси z по закону φ = t3 - 2t2 . По пластинке вдоль прямой ВD, образующей с вертикалью угол α = 30°, движется точка М по закону s = AM = 30(t2 - t)+ 20 см (t – в секундах). На рис. К4.1 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.
Дано:
Точка М движется относительно пластины по окружности. Уравнение относительного движения т. М:
s(t) = 4π(sin(2πt))2 = cм
Уравнение движения пластины:
ωe(t) = 3t − 2 (1/с)
R = 9 cм
t1 = 1/3 сек
Определить: Для заданного момента времени определить абсолютную скорость и абсолютное ускорение т.М.

Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/с . На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано: R= 20 см, ω= 3 1/с h=30см
Найти: Vа, Vr

Точка M движется относительно тела D. По заданным уравнениям относительного движения точки M и движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Тело произвольной формы вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины с угловой скоростью ω = 2t −1,5t2 (рад) (положительное направление отсчёта ω показано на рис. П.30). По дуге окружности радиуса R = 0,5 м движется точка В по закону S = AB = π · R · cos πt/3 (м), t - сек (положительные отсчёты от А к В). Определить абсолютную скорость и абсолютное ускорение точки в момент времени t1 = 2 c.
Задача К4
Определить скорости и ускорения точки А

Стержень ОА вращается вокруг точки О с угловой скоростью ω=f1(t) . Вдоль стержня движется точка М, положение которой определяется заданным расстоянием S=f2(t) . Найти абсолютное ускорение точки М в момент времени t =2 c.