Артикул: 1067471

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Сложное движение точки (58 шт.)

Название:Тело произвольной формы вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины с угловой скоростью ω = 2t −1,5t2 (рад) (положительное направление отсчёта ω показано на рис. П.30). По дуге окружности радиуса R = 0,5 м движется точка В по закону S = AB = π · R · cos πt/3 (м), t - сек (положительные отсчёты от А к В). Определить абсолютную скорость и абсолютное ускорение точки в момент времени t1 = 2 c.

Описание:
Подробное решение - 5 страниц

Изображение предварительного просмотра:

Тело произвольной формы вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины с угловой скоростью ω = 2t −1,5t<sup>2</sup> (рад) (положительное направление отсчёта ω показано на рис. П.30). По дуге окружности радиуса R = 0,5 м движется точка В по закону S = <sup>∪</sup> AB = π · R · cos πt/3 (м), t - сек  (положительные отсчёты от А к В). Определить абсолютную скорость и абсолютное ускорение точки в момент времени t<sub>1</sub> = 2 c.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задача К3. Прямоугольная пластина вращается вокруг неподвижной оси с постоянной угловой скоростью ω. Ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости).
По пластине вдоль прямой BD движется точка М. Закон ее относительного движения s=AM=f(t) (s – в см , t – в сек) задан в таблице. Точка М показана в положении, при котором s=AM> (при s<0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Исходные данные:
φв = 1,2t - t2
OM = Sr= 20πcos((π/4)t)
t1 = 4/3, R = 20 см, а = 20 см
(задача К-7, вариант 10)

На неподвижную проволочную окружность радиуса 20 см надето колечко М (рис.); через него проходит стержень ОА, который вращается вокруг оси О против часовой стрелки с угловой скоростью w = 1 1/с. Найти относительную, переносную и абсолютную скорости колечка М в момент, когда угол ОСМ равен 90°.
Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/с . На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано: R= 20 см, ω= 3 1/с h=30см
Найти: Vа, Vr

Прямоугольная пластина или круглая пластина радиусом R = 60 см (рис.1.4) вращается вокруг неподвижной оси с постоянной угловой скоростью, заданной в табл. 1.4 (при знаке минус направление противоположно показанному на рисунке). Ось вращения на схемах 1 - 4 и 9, 10 перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на схемах 5 – 8 ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве).
По пластине вдоль прямой BD ( схемы 1 – 6) или по окружности радиуса R, т.е. по ободу пластины (схемы 7 – 10), движется точка М. Закон ее относительного движения, выражаемый уравнением S = AM = f(t) (s – в сантиметрах, t - в секундах), задан в табл. 1.4 отдельно для схем 1 – 6 и для схем 7 - 10, при этом на схемах 7 - 10 и отсчитывается по дуге окружности; там же даны размеры b и l . На всех схемах точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 2,5πt2 см
φе(t) = 2t3 - 5t рад
t1 = 2 c
R = 40 см
(задача К-7, вариант 28)

Дано:
Точка М движется относительно пластины по окружности. Уравнение относительного движения т. М:
s(t) = 4π(sin(2πt))2 = cм
Уравнение движения пластины:
ωe(t) = 3t − 2 (1/с)
R = 9 cм
t1 = 1/3 сек
Определить: Для заданного момента времени определить абсолютную скорость и абсолютное ускорение т.М.

Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/c.
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано:R=20см, ω= 3 1/с, h = 10 см
Найти: Va, VT

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 4πt2 см
xe = t3 + 4t
t1 = 2 c
R = 48 см
(задача К-7, вариант 30)

Прямоугольная пластинка (рис. К4.1) вращается вокруг неподвижной оси z по закону φ = t3 - 2t2 . По пластинке вдоль прямой ВD, образующей с вертикалью угол α = 30°, движется точка М по закону s = AM = 30(t2 - t)+ 20 см (t – в секундах). На рис. К4.1 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.