Артикул: 1067470

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Сложное движение точки (58 шт.)

Название:Треугольная пластина ADE вращается вокруг оси Z с угловой скоростью ω = 0,3t2 − 2,2 рад/с (положительное направление ω показано на рисунке дуговой стрелкой). По гипотенузе AD движется точка В по закону S = АВ = 2 +15t − 3t2 см (положительное направление отсчёта S от А к D). Определить абсолютную скорость Vабс и абсолютное ускорение aабс точки B в момент времени t1 = 2 c.

Описание:
Подробное решение

Изображение предварительного просмотра:

Треугольная пластина ADE вращается вокруг оси Z с угловой скоростью ω = 0,3t<sup>2</sup> − 2,2 рад/с (положительное направление ω показано на рисунке дуговой стрелкой). По гипотенузе AD движется точка В по закону S = АВ = 2 +15t − 3t<sup>2</sup> см (положительное направление отсчёта S от А к D). Определить абсолютную скорость  V<sub>абс</sub> и абсолютное ускорение  a<sub>абс</sub> точки B в момент времени t<sub>1</sub> = 2 c.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t 1 абсолютную скорость и абсолютное ускорение точки M.
(задача К-7, вариант 15)

Задание 4. Сложное движение точкиПрямоугольная пластина вращается вокруг неподвижной оси по закону φ. По пластине вдоль прямой BD движется точка М. Закон ее относительного движения S.
Найти скорость и ускорение точки М в момент времени t1=1c.
Вариант АБВ = 342

Стержень ОА вращается вокруг точки О с угловой скоростью ω=f1(t) . Вдоль стержня движется точка М, положение которой определяется заданным расстоянием S=f2(t). Найти абсолютное ускорение точки М в момент времени t=2c. Дано: ω = 6-t2 S=12t2 - 36t + 36 Найти: a
По трубке, изогнутой в форме окружности радиуса R = 20 см (рис), течет жидкость с постоянной относительно трубки скоростью 40 см/с. Трубка вращается вокруг оси О с постоянной угловой скоростью ω = 1 1/с. Найти абсолютную скорость частицы жидкости, когда она занимает в трубке положение, определяемое углом ОСМ, равным 120° . Направления вращения трубки и течения жидкости (по трубке) – против хода стрелки часов.
Тело произвольной формы вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины с угловой скоростью ω = 2t −1,5t2 (рад) (положительное направление отсчёта ω показано на рис. П.30). По дуге окружности радиуса R = 0,5 м движется точка В по закону S = AB = π · R · cos πt/3 (м), t - сек (положительные отсчёты от А к В). Определить абсолютную скорость и абсолютное ускорение точки в момент времени t1 = 2 c.
Точка М движется относительно тела D. По заданным уравнениям относительного движения точки М и движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M. Схема механизма показана на рисунке 1, исходные данные, приведены в таблице 1 (задача К-7, вариант 8)
Вдоль цеха по рельсам с постоянной скоростью 0,1 м/с перемещается мостовой кран АВ, по которому с постоянной скоростью 0,2 м/с движется тележка М. Определить абсолютную скорость тележки.
Определить скорость и ускорение точки М
Круглая пластинка (рис. К4.2) радиуса R = 60 см, вращается вокруг неподвижной оси, проходящей через точку О, по законуφ= 2t2 - t3 . По пластинке по окружности движется точка М по закону s = AM = ((πR)/2)(2t3 - 4t2) = см (t – в секундах). На рис. К4.2 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.
По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Исходные данные:
OM = Sr = 6πt2 см, t1 = 1 с,
R = 18 см,
O1O = O2A = 20 см,
φe = (πt3)/6
(задача К-7, вариант 23)