Артикул: 1067428

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Сложное движение точки (58 шт.)

Название:Круглая пластина радиусом R = 60 см вращается вокруг неподвижной оси, перпендикулярной плоскости пластины и проходящей через точку О, лежащую на ее ободе, по закону φ = 4(t2 - t) рад (рис. 6.4). По ободу пластины движется точка М, положение которой определяется координатой S - АМ - πR(At2 - 2t3)/3 см.
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = 1 с.

Описание:
Подробное решение

Изображение предварительного просмотра:

Круглая пластина радиусом R = 60 см вращается вокруг неподвижной оси, перпендикулярной плоскости пластины и проходящей через точку О, лежащую на ее ободе, по закону  φ = 4(t<sup>2</sup> - t) рад (рис. 6.4). По ободу пластины движется точка М, положение которой определяется координатой S - АМ - πR(At<sup>2</sup> - 2t<sup>3</sup>)/3  см. <br />	Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = 1 с.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 2,5πt2 см
φе(t) = 2t3 - 5t рад
t1 = 2 c
R = 40 см
(задача К-7, вариант 28)

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 25sin(πt/3)
φв(t) = 2t2 - 0,5t
t1 = 4c
a = 25 cм
(задача К-7, вариант 11)

Круглая пластинка (рис. К4.2) радиуса R = 60 см, вращается вокруг неподвижной оси, проходящей через точку О, по законуφ= 2t2 - t3 . По пластинке по окружности движется точка М по закону s = AM = ((πR)/2)(2t3 - 4t2) = см (t – в секундах). На рис. К4.2 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.
Прямоугольная пластина или круглая пластина радиусом R = 60 см (рис.1.4) вращается вокруг неподвижной оси с постоянной угловой скоростью, заданной в табл. 1.4 (при знаке минус направление противоположно показанному на рисунке). Ось вращения на схемах 1 - 4 и 9, 10 перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на схемах 5 – 8 ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве).
По пластине вдоль прямой BD ( схемы 1 – 6) или по окружности радиуса R, т.е. по ободу пластины (схемы 7 – 10), движется точка М. Закон ее относительного движения, выражаемый уравнением S = AM = f(t) (s – в сантиметрах, t - в секундах), задан в табл. 1.4 отдельно для схем 1 – 6 и для схем 7 - 10, при этом на схемах 7 - 10 и отсчитывается по дуге окружности; там же даны размеры b и l . На всех схемах точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Проволочная окружность радиусом R=20 см вращается в своей плоскости вокруг точки О с угловой скоростью ω = 3 1/с .
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано: R = 20 см, ω = 3 1/с, h = 10 см
Найти: Va, VT

Задание 4. Сложное движение точкиПрямоугольная пластина вращается вокруг неподвижной оси по закону φ. По пластине вдоль прямой BD движется точка М. Закон ее относительного движения S.
Найти скорость и ускорение точки М в момент времени t1=1c.
Вариант АБВ = 342

Точка М движется относительно тела D. По заданным уравнениям относительного движения точки М и движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M. Схема механизма показана на рисунке 1, исходные данные, приведены в таблице 1 (задача К-7, вариант 8)
Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/c.
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано:R=20см, ω= 3 1/с, h = 10 см
Найти: Va, VT

Тело произвольной формы вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины с угловой скоростью ω = 2t −1,5t2 (рад) (положительное направление отсчёта ω показано на рис. П.30). По дуге окружности радиуса R = 0,5 м движется точка В по закону S = AB = π · R · cos πt/3 (м), t - сек (положительные отсчёты от А к В). Определить абсолютную скорость и абсолютное ускорение точки в момент времени t1 = 2 c.
По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 4πt2 см
xe = t3 + 4t
t1 = 2 c
R = 48 см
(задача К-7, вариант 30)