Артикул: 1055559

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название:Система на рис. Д2.6 состоит из груза А, ступенчатого барабана В и катушки С. Постоянный момент M = 12Pr вращает барабан В, наматывая на него два троса, поднимающих груз А и катушку С, катящуюся без проскальзывания по наклонной плоскости, образующей с горизонтом угол a.
Вес груза А равен 5P, вес барабана В равен P , R = 2r . Радиус инерции барабана В относительно его оси вращения r. Вес катушки С равен 2P, радиус инерции катушки относительно оси ее симметрии √2r . Пренебрегая весом тросов и сопротивлением движению, определить угловое ускорение барабана В.

Описание:
Подробное решение

Изображение предварительного просмотра:

Система на рис. Д2.6 состоит из груза А, ступенчатого барабана В и катушки С. Постоянный момент M = 12Pr вращает барабан В, наматывая на него два троса, поднимающих груз А и катушку С, катящуюся без проскальзывания по наклонной плоскости, образующей с горизонтом угол a. <br />Вес груза А равен 5P, вес барабана В равен P , R = 2r . Радиус инерции барабана В относительно его оси вращения r. Вес катушки С равен 2P, радиус инерции катушки относительно оси ее симметрии √2r . Пренебрегая весом тросов и сопротивлением движению, определить угловое ускорение барабана В.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Динамическое исследование движения системы с одной степенью свободы
1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение, служащее для определения зависимости s(t) координаты точки A от времени – дифференциальное уравнение движения системы.
2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в дифференциальной форме.
3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
4. Убедившись в совпадении результатов, полученных четырьмя независимыми способами, проинтегрировать дифференциальное уравнение движения системы, получив зависимость s(t) координаты точки A от времени.
5. Определить натяжения тросов в начальный момент времени (при t = 0).

Дано: VB = 3 м/с, f = 0,3, l = 3 м, h = 5 м. Найти: T и VA.
(задача Д-1, вариант 28)

Задача 4.2 (вариант 3)
Динамика плоского движения
К барабану лебедки (1) приложен момент M(t). Второй конец троса намотан на внутренний барабан колеса (2), которое катится без проскальзывания по наклонной плоскости. Барабан лебедки – однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции J2 = m2ρ22. Определить закон вращения лебедки φ2(t). В начальный момент система была в покое. Задачу решить двумя способами:
А) С помощью фундаментальных законов (1) и (2)
В) С помощью теоремы об изменении кинетической энергии (3)
Дано: m1= 4.0 кг, m2 = 4.0 кг, R1 = 0.3 м, R2 = 0.3 м, r2 = 0.2 м, ρ = 0.25 м, α = 30°, М = 3-0.2t Н·м
Найти: φ2=φ2(t)

Динамика материальной точки
Задана сила F = 5eu/9 действующая на тело и его масса m = 90. Начальные условия: t = 0, υ0=5. Определить когда скорость достигнет значения 10?
Дифференциальные уравнения движения точки. Решение задач динамики точки. (реферат)Дано: OA = 40 cм, M = 400 Н·м.
Найти Р
(задача Д-14, вариант 22)

Задача 4.2
К барабану лебедки (1) приложен момент M(t).Второй конец троса намотан на внутренний барабан колеса (2), которое катиттся без проскальзывания по наклонной плоскости. барабан лебедки - однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции I2 = m2·ρ22. Определить закон вращения лебедки φ(t). В начальный момент система была в покое. Задачу решить двумя способами:
A) С помощью фундаментальных законов (1) и (2)
B) С помощью теоремы об изменении кинетической энергии (3)
Вариант 1

Дано: OC = 2·OA = 100 cм, Р = 200 Н, М = 50 Н·м, С = 50 Н/см, механизм расположен в горизонтальной плоскости
Определить: h - деформацию пружины (задача Д-14, вариант 23)

Дано: OA = AB = AC = 50 cм, Q = 50 H, P = 100 H.
Найти M (задача Д-14, вариант 20)

Дано: P1 = 15 см, P2 = 40 см, P3 = 20 см, OA = 100 см, Q = 2·103 H, h = 4 см.
Найти: С
(задача Д-14, вариант 10)