Артикул: 1055550

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Сложное движение точки (58 шт.)

Название:Круглая пластинка (рис. К4.2) радиуса R = 60 см, вращается вокруг неподвижной оси, проходящей через точку О, по законуφ= 2t2 - t3 . По пластинке по окружности движется точка М по закону s = AM = ((πR)/2)(2t3 - 4t2) = см (t – в секундах). На рис. К4.2 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Описание:
Подробное решение

Изображение предварительного просмотра:

Круглая пластинка (рис. К4.2) радиуса R = 60 см, вращается вокруг неподвижной оси, проходящей через точку О, по законуφ= 2t<sup>2</sup> - t<sup>3</sup> . По пластинке по окружности движется точка М по закону s = AM = ((πR)/2)(2t<sup>3</sup> - 4t<sup>2</sup>) = см (t – в секундах). На рис. К4.2 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t<sub>1</sub> = 1 с.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

В вагоне, движущимся по прямолинейному участку пути рельсу с ускорением а, подвешен стержень ОА, который совершает колебательное движение по закону φ=f(t) в вертикальной плоскости вокруг оси О, перпендикулярной к направлению движения вагона.
Определить для указанного момента времени t абсолютное ускорение точки А стержня.
Дано: φ = π/4 sin 1/2 t, t=π(c), OA=32 √2(см), а = 2π(см/с2) Найти: аА

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t 1 абсолютную скорость и абсолютное ускорение точки M.
(задача К-7, вариант 15)

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 25sin(πt/3)
φв(t) = 2t2 - 0,5t
t1 = 4c
a = 25 cм
(задача К-7, вариант 11)

По трубке, изогнутой в форме окружности радиуса R = 20 см (рис), течет жидкость с постоянной относительно трубки скоростью 40 см/с. Трубка вращается вокруг оси О с постоянной угловой скоростью ω = 1 1/с. Найти абсолютную скорость частицы жидкости, когда она занимает в трубке положение, определяемое углом ОСМ, равным 120° . Направления вращения трубки и течения жидкости (по трубке) – против хода стрелки часов.
Стержень ОА вращается вокруг точки О с угловой скоростью ω=f1(t) . Вдоль стержня движется точка М, положение которой определяется заданным расстоянием S=f2(t). Найти абсолютное ускорение точки М в момент времени t=2c. Дано: ω = 6-t2 S=12t2 - 36t + 36 Найти: a
Стержень ОА вращается вокруг точки О с угловой скоростью ω=2 1/c . На стержень надето колечко М, которое может скользить по неподвижной проволочной окружности радиусом R=12см.
Найти абсолютную скорость колечка М и его скорость относительно стержня в момент, определяемый углом φ.
Дано: ω=2 1/с R=12 см, φ=60°
Найти: Va, Vr

Задача К4. Вариант 63
Дано:
φ = t2-2t3
b = 16 см
S = AM = 60(t4-3t2)+56
t1 = 1c
Найти: Vab, aab

Определение абсолютной скорости и абсолютного ускорения точки
Точка М движется заданным образом (см. рисунок К-3) в подвижной системе отсчета, движение которой, в свою очередь, задано (законы OM = s(t) и φ(t) или φ1(t) и φ2(t) известны). Для момента времени t1 найти скоростьVM и ускорение WM.
Вариант 6
Дано: a = 40 см, α = 30°, S = ОМ = asin(πt/3), φ = t3-5t, t = 0.5 c

Прямоугольная пластина или круглая пластина радиусом R = 60 см (рис.1.4) вращается вокруг неподвижной оси с постоянной угловой скоростью, заданной в табл. 1.4 (при знаке минус направление противоположно показанному на рисунке). Ось вращения на схемах 1 - 4 и 9, 10 перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на схемах 5 – 8 ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве).
По пластине вдоль прямой BD ( схемы 1 – 6) или по окружности радиуса R, т.е. по ободу пластины (схемы 7 – 10), движется точка М. Закон ее относительного движения, выражаемый уравнением S = AM = f(t) (s – в сантиметрах, t - в секундах), задан в табл. 1.4 отдельно для схем 1 – 6 и для схем 7 - 10, при этом на схемах 7 - 10 и отсчитывается по дуге окружности; там же даны размеры b и l . На всех схемах точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/с . На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано: R= 20 см, ω= 3 1/с h=30см
Найти: Vа, Vr