Артикул: 1054025

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название:Задача Д10 Вариант 13
Механическая система под действием сил тяжести приходит в движение из состояния покоя; начальное положение системы показано на рис. 152–154. Учитывая трение скольжения тела 1 (варианты 1–3, 5, 6, 8–12, 17–23, 28–30) и сопротивление качению тела 3, катящегося без скольжения (варианты 2, 4, 6–9, 11, 13–15, 20, 21, 24, 27, 29), пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s. В задании приняты следующие обозначения: m1, m2, m3, m4 – массы тел 1, 2, 3, 4; R2, r2, R3, r3 – радиусы больших и малых окружностей; i2x, i3ξ – радиусы инерции тел 2 и 3 относительно горизонтальных осей, проходящих через их центры тяжести; α, β – углы наклона плоскостей к горизонту; f – коэффициент трения скольжения; δ – коэффициент трения качения.

Описание:
Подробное решение - 6 страниц

Поисковые тэги: Сборник Яблонского

Изображение предварительного просмотра:

Задача Д10 Вариант 13<br />Механическая система под действием сил тяжести приходит в движение из состояния покоя; начальное положение системы показано на рис. 152–154. Учитывая трение скольжения тела 1 (варианты 1–3, 5, 6, 8–12, 17–23, 28–30) и сопротивление качению тела 3, катящегося без скольжения (варианты 2, 4, 6–9, 11, 13–15, 20, 21, 24, 27, 29), пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.  В задании приняты следующие обозначения: m1, m2, m3, m4 – массы тел 1, 2, 3, 4; R2, r2, R3, r3 – радиусы больших и малых окружностей; i2x, i3ξ – радиусы инерции тел 2 и 3 относительно горизонтальных осей, проходящих через их центры тяжести; α, β – углы наклона плоскостей к горизонту; f – коэффициент трения скольжения; δ – коэффициент трения качения.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задача 4.2
К барабану лебедки (1) приложен момент M(t).Второй конец троса намотан на внутренний барабан колеса (2), которое катиттся без проскальзывания по наклонной плоскости. барабан лебедки - однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции I2 = m2·ρ22. Определить закон вращения лебедки φ(t). В начальный момент система была в покое. Задачу решить двумя способами:
A) С помощью фундаментальных законов (1) и (2)
B) С помощью теоремы об изменении кинетической энергии (3)
Вариант 1

Дифференциальные уравнения движения точки. Решение задач динамики точки. (реферат)
Дано: VB = 3 м/с, f = 0,3, l = 3 м, h = 5 м. Найти: T и VA.
(задача Д-1, вариант 28)

Дано: OA = 40 cм, M = 400 Н·м.
Найти Р
(задача Д-14, вариант 22)

Дано: VA = 0, α = 30°, f = 0,2, h = 4.5 м, l = 6 м. Найти: τ и VC.
(задача Д-1, вариант 25)

Задача 4.2 (вариант 3)
Динамика плоского движения
К барабану лебедки (1) приложен момент M(t). Второй конец троса намотан на внутренний барабан колеса (2), которое катится без проскальзывания по наклонной плоскости. Барабан лебедки – однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции J2 = m2ρ22. Определить закон вращения лебедки φ2(t). В начальный момент система была в покое. Задачу решить двумя способами:
А) С помощью фундаментальных законов (1) и (2)
В) С помощью теоремы об изменении кинетической энергии (3)
Дано: m1= 4.0 кг, m2 = 4.0 кг, R1 = 0.3 м, R2 = 0.3 м, r2 = 0.2 м, ρ = 0.25 м, α = 30°, М = 3-0.2t Н·м
Найти: φ2=φ2(t)

Динамическое исследование движения системы с одной степенью свободы
1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение, служащее для определения зависимости s(t) координаты точки A от времени – дифференциальное уравнение движения системы.
2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в дифференциальной форме.
3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
4. Убедившись в совпадении результатов, полученных четырьмя независимыми способами, проинтегрировать дифференциальное уравнение движения системы, получив зависимость s(t) координаты точки A от времени.
5. Определить натяжения тросов в начальный момент времени (при t = 0).

Динамика материальной точки
Задана сила F =5υ/(sin(υ/6)) действующая на тело и его масса m = 14. Начальные условия: x = 0, υ0=6. Найти x при υ =12
Динамика материальной точки
Задана сила F =√(2t+1), действующая на тело и его масса m = 5. Начальные условия: t = 0, υ0=5. Найти υ при t = 6
Задача 4.2
К барабану лебедки (1) приложен момент M(t).Второй конец троса намотан на внутренний барабан колеса (2), которое катиттся без проскальзывания по наклонной плоскости. барабан лебедки - однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции I2 = m2·ρ22. Определить закон вращения лебедки φ(t). В начальный момент система была в покое. Задачу решить двумя способами:
A) С помощью фундаментальных законов (1) и (2)
B) С помощью теоремы об изменении кинетической энергии (3)
Вариант 10