Артикул: 1052998

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Приложения определенного интеграла (830 шт.)

Название:Задача 2529 из сборника Демидовича.
Для случая процесса второго порядка скорость химической реакции, переводящей вещество A в вещество B, пропорциональна произведению концентрации этих веществ.
Какой процент вещества B будет содержаться в сосуде через t = 1 ч, если при t = 0 мин имелось 20 % вещества B, а при t = 15 мин его стало 80 %?

Описание:
Подробное решение.

Поисковые тэги: Сборник Демидовича

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Вычислить объем и поверхность тора, образованного вращением круга, уравнение окружности которого x2 + (y - a)2 = R2, вокруг оси Ox (a > R)
Найти среднее значение функции y = sin(3x) на отрезке [0; π/3]
Найти длину дуги циссоиды Диоклеса
r = 2a(sin2(φ)/cos(φ)) от точки (r1, φ1) до точки (r2, φ2) (φ1 < φ2)

В начале координат O находится масса m, которая притягивает по закону Ньютона с силой, модуль которой F = m/x2, материальную точку М единичной массы, находящуюся на оси Ох на расстояние х от начала координат
На вал, вращающийся с угловой скоростью ω , насажен диск радиуса R, погруженный в жидкость. Считая, что сила трения окружающей жидкости о поверхность диска пропорциональна плотности жидкости ρ, квадрату скорости и площади соприкасания, определить момент сил трения относительно оси вала.
Определить площадь, ограниченную лемнискатой Бернулли, определяемой уравнением r2 = 2a2cos(2φ)
Найти площадь фигуры ограниченной линиями: y=sin⁡(x), y=cos⁡(x), x=0
Тяжелая цепь длиною L = 200 м поднимается, навиваясь на ворот. Определить работу силы веса при поднятии цепи, пренебрегая размерами ворота, если погонный метр цепи весит 50 кг.
Вычислить массу контура L : x2 + y2 = 4x если плотность в каждой его точке δ = x - y
Найти площадь, ограниченную синусоидой y = sin(x) на отрезке [0, π] и осью Ox