Артикул: 1052942

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Приложения определенного интеграла (830 шт.)

Название:Задача 2517 из сборника Демидовича.
Какую работу надо затратить, чтобы тело массы m поднять с поверхности Земли, радиус которой R, на высоту h?
Чему равна эта работа, если тело удаляется в бесконечность?

Описание:
Подробное решение.

Поисковые тэги: Сборник Демидовича

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Вычислить площадь одного лепестка розы, определяемой уравнением r = asin(kφ)
Прямоугольная пластинка со сторонами a дм и h дм вертикально погружена в жидкость удельного веса γ. Сторона длиной а дм лежит на поверхности жидкости. Определить численное значение силы давления, испытываемого каждой стороной пластинки.
Вычислить объем и поверхность тора, образованного вращением круга, уравнение окружности которого x2 + (y - a)2 = R2, вокруг оси Ox (a > R)
Найти площадь, ограниченную цепной линией, определяемой уравнением y = a/2(ex/a + e-x/a), осями координат и прямой x = a ( a > 0)
Найти объем и боковую поверхность параболоида, образованного вращением параболы y2 = 2px вокруг оси Ox и ограниченного плоскостью x = H
Найти длину дуги циссоиды Диоклеса
r = 2a(sin2(φ)/cos(φ)) от точки (r1, φ1) до точки (r2, φ2) (φ1 < φ2)

Найти объем тела ограниченного поверхностями: x=√y, x=3√y, y+z=4 , z=0
На отрезке АВ длиною а см взята точка Р. Найти среднее значение Sm площадей прямоугольников, построенных на отрезках АР и РВ как на сторонах
Вычислить площадь, ограниченную прямой x = 4, кривой y = 3x2 - 6x и осью Ox на отрезке [0, 4]
Определить площадь, ограниченную лемнискатой Бернулли, определяемой уравнением r2 = 2a2cos(2φ)