Артикул: 1046225

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название:Решение открытой транспортной задачи методом потенциалов
На оптовых складах А1, А2, А3, А4 имеются запасы некоторого продукта в известных количествах, который необходимо доставить в магазины В1, В2, В3, В4, В5. Известны также тарифы на перевозку единицы продукта из каждого склада в каждый магазин.
Найти такой вариант прикрепления магазинов к складам, при котором сумма затрат на перевозку была бы минимальной.

Описание:
Подробное решение в WORD - 5 страниц

Изображение предварительного просмотра:

<b>Решение открытой транспортной задачи методом потенциалов </b><br />На оптовых складах А1, А2, А3, А4 имеются запасы некоторого продукта в известных количествах, который необходимо доставить в магазины В1, В2, В3, В4, В5. Известны также тарифы на перевозку единицы продукта из каждого склада в каждый магазин. <br />Найти такой вариант прикрепления магазинов к складам, при котором сумма затрат на перевозку была бы минимальной.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задача линейного программирования
Решить задачу многокритериальной оптимизации методом ограничений

Минимизировать линейную функцию L = 12x1 + 4x2 при ограничениях: x1 + x2 ≥ 2, x1 ≥ 1/2, x2 ≤ 4, x1 - x2 ≤ 0
Найти наибольшее значение функции L = x1 + 3x2 + 3x3 при значениях: x2 + x3 ≤ 3, x1 - x2 ≥ 0, x2 ≥ 1, 3x1 + x2 ≤ 15
Найти наименьшее значение линейной функции L = 7x1 + 5x2 на множестве неотрицательных решений системы уравнений
В обработку поступили две партии досок для изготовления комплектов из трех деталей (треугольные каркасы настилов на стройплощадку), причем первая партия содержит 52 доски длиной по 6,5 м каждая, вторая содержит 200 досок длиной по 4 м каждая. Каждый комплект состоит из двух деталей по 2 м каждая и одной детали в 1,25 м.
Ставится задача поиска рационального варианта раскроя поступившего в обработку материала.
Решение военно-логической задачи по распределению ударной группы авиационного подразделения
В авиационном подразделении имеется 40 вертолетов. Планируется удар полковым вылетом по 3-м групповым целям: скоплению танков, двум дивизионам самоходной артиллерии и подразделению мотопехоты на бронетранспортерах. Необходимо найти оптимальный вариант распределения вертолетов по объектам удара и оценить его эффективность по математическому ожиданию поражаемой силы, выраженной в единицах боевого потенциала.
Боевой потенциал ударной группы приведен в табл. 1. Боевые потенциалы групповых целей приведены в табл. 2.

Найти наибольшее значение функции L = 3x1 - 6x2 + 2x3 при ограничениях: 3x1 + 3x2 + 2x3 ≤ 6, x1 + 4x2 + 8x3 ≤ 8
Симплекс-метод (реферат)
Максимизировать линейную форму L = x2 + x3 при ограничениях: x1 - x2 + x3 = 1, x2 - 2x3 + x4 = 2
Максимизировать линейную форму L = 2x1 - x4 при следующей системе ограничений