Артикул: 1045087

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название:Производится стрельба по некоторой мишени до первого попадания. Вероятность попадания при каждом выстреле равна 0.7. Найти математическое ожидание случайной величины ξ - числа произведённых выстрелов.

Описание:
Подробное решение в WORD - 2 страницы

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Бросаются две игральные кости. Определить вероятность того, что:
а) сумма числа очков не превосходит N;
б) произведение числа очков не превосходит N;
в) произведение числа очков делится на N.
N=12
Из отрезка (-1,2) наудачу взяты два числа. Какова вероятность, что их сумма больше единицы, а произведение меньше единицы?
Электрическая цепь составлена из блоков по данной схеме. Найти вероятность разрыва цепи, если вероятность выхода из строя каждого блока равна p=0,3
Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что событие наступит 60 раз в 100 испытаниях
В каждой из двух урн содержится по 6 белых и по 4 черных шара. Из первой урны наугад один шар переложили во вторую. Какова вероятность, что шар, наугад вытащенный из второй урны, будет черным?Известно распределение системы двух дискретных величин (ξ, η).
Определить частные, условные (при ξ = 1, η = 0) распределения и числовые характеристики системы случайных величин mξ, Dξ, mη, Dη, Kξ,η,, rξ,η; а также найти вероятность попадания двумерной случайной величины (ξ, η) в область

Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
Случайная величина X задана следующим законом распределения:

Случайная величина Х имеет ряд распределения. Найти а, М(х), σ(х)
Заданы математическое ожидание α и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти: а) вероятность того, что X примет значение, принадлежащее интервалу (a, b); б) вероятность того, что абсолютная величина отклонения X – α окажется меньше d.
Дано: α = 6, s = 2, a = 4, b = 12, d = 4.
В типографии имеется 6 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,8. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше 4.