Артикул: 1044902

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название:В партии 10 деталей, из них 7 стандартных, остальные нестандартные. Наудачу отобраны 4 детали. Составить закон распределения дискретной случайной величины Х - числа нестандартных деталей среди отобранных.

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Плотность распределения случайного вектора имеет вид. Найти А, MX и Р{X>Y}
Плотность распределения случайной величины Х имеет вид. Найти плотность распределения Y=X3
Известно распределение системы двух дискретных величин (ξ, η).
Определить частные, условные (при ξ = 1, η = 0) распределения и числовые характеристики системы случайных величин mξ, Dξ, mη, Dη, Kξ,η,, rξ,η; а также найти вероятность попадания двумерной случайной величины (ξ, η) в область

Имеется две партии деталей. В первой – все хорошие, а во второй 25% брака. Какова вероятность, что деталь из наудачу взятой партии хорошая?
Вероятность того, что на один лотерейный билет выпадет выигрыш, равна 0,2. Куплено 5 билетов. Найти вероятность того, что
А) выиграют два билета;
Б) выиграют хотя бы три билета.
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Произведено 400 испытаний. Найти вероятность того, что относительная частота появления события отклонится от его вероятности не более, чем на 0,09.
В круге радиуса R = 14 наудачу появляется точка. Определить вероятность того, что она попадает в одну из двух непересекающихся фигур, площади которых равны s1 = 2,6 и s2 = 1,8 В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
Из отрезка (-1,2) наудачу взяты два числа. Какова вероятность, что их сумма больше единицы, а произведение меньше единицы?Игральная кость бросается три раза. Какова вероятность выпадения одной «шестерки»?