Артикул: 1043125

Раздел:Технические дисциплины (53982 шт.) >
  Теоретическая механика (теормех, термех) (1457 шт.) >
  Кинематика (483 шт.) >
  Сложное движение точки (58 шт.)

Название:Прямоугольная пластина или круглая пластина радиусом R = 60 см (рис.1.4) вращается вокруг неподвижной оси с постоянной угловой скоростью, заданной в табл. 1.4 (при знаке минус направление противоположно показанному на рисунке). Ось вращения на схемах 1 - 4 и 9, 10 перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на схемах 5 – 8 ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве).
По пластине вдоль прямой BD ( схемы 1 – 6) или по окружности радиуса R, т.е. по ободу пластины (схемы 7 – 10), движется точка М. Закон ее относительного движения, выражаемый уравнением S = AM = f(t) (s – в сантиметрах, t - в секундах), задан в табл. 1.4 отдельно для схем 1 – 6 и для схем 7 - 10, при этом на схемах 7 - 10 и отсчитывается по дуге окружности; там же даны размеры b и l . На всех схемах точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Прямоугольная  пластина  или круглая пластина радиусом R = 60 см (рис.1.4) вращается вокруг неподвижной оси с постоянной угловой скоростью, заданной в табл. 1.4 (при знаке минус направление  противоположно показанному на рисунке). Ось вращения на схемах 1 - 4 и 9, 10 перпендикулярна плоскости пластины и проходит через точку  О (пластина вращается в своей плоскости); на схемах 5 – 8 ось вращения ОО<sub>1</sub> лежит в плоскости пластины (пластина вращается в пространстве). <br /> По пластине вдоль прямой BD  ( схемы 1 – 6) или по окружности радиуса R, т.е. по ободу пластины  (схемы 7 – 10), движется  точка  М.  Закон ее относительного движения, выражаемый  уравнением  S = AM = f(t)  (s –  в   сантиметрах, t -   в секундах), задан  в табл. 1.4 отдельно для   схем   1 – 6  и для схем   7  - 10,  при  этом  на  схемах  7  - 10  и отсчитывается по дуге окружности;  там же даны размеры  b  и  l .  На всех  схемах  точка  М  показана в положении, при котором s = AM > 0  (при  s < 0 точка М  находится по другую сторону от точки  А). <br /> Определить абсолютную скорость и абсолютное ускорение  точки М в момент времени t<sub>1</sub> = 1 с.

Вы можете оплатить, используя банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множеством других способов

Похожие задания:

Стержень ОА вращается вокруг точки О с угловой скоростью ω=f1(t) . Вдоль стержня движется точка М, положение которой определяется заданным расстоянием S=f2(t) . Найти абсолютное ускорение точки М в момент времени t =2 c.
Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/c.
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано:R=20см, ω= 3 1/с, h = 10 см
Найти: Va, VT

По трубке, изогнутой в форме окружности радиуса R = 20 см (рис), течет жидкость с постоянной относительно трубки скоростью 40 см/с. Трубка вращается вокруг оси О с постоянной угловой скоростью ω = 1 1/с. Найти абсолютную скорость частицы жидкости, когда она занимает в трубке положение, определяемое углом ОСМ, равным 120° . Направления вращения трубки и течения жидкости (по трубке) – против хода стрелки часов.
В вагоне, движущимся по прямолинейному участку пути рельсу с ускорением а, подвешен стержень ОА, который совершает колебательное движение по закону φ=f(t) в вертикальной плоскости вокруг оси О, перпендикулярной к направлению движения вагона.
Определить для указанного момента времени t абсолютное ускорение точки А стержня.
Дано: φ = π/4 sin 1/2 t, t=π(c), OA=32 √2(см), а = 2π(см/с2) Найти: аА

Дано: ОМ0 = 50 см; ω1 = 3,2 рад/с; ε1 = -4,7 рад/с, ММ0 = 10 см.
Найти: ωА, εА, vм, εм.
ОС = √502-252=43,3 см.

Круглая пластина радиуса R = 60 см вращается вокруг неподвижной оси по закону φ = 10t2 - 5t3. Положительное направление угла φ показано на рисунке дуговой стрелкой. Ось вращения OO1 лежит в плоскости пластины (пластина вращается в пространстве). По окружности радиуса R движется точка M. Закон ее движения по дуге окружности s = ∪AM = π/3R(t3 - 2t). На рисунке точка M показана в положении, когда s положительно, при s отрицательном точка M находится по другую сторону от точки A; L = R. Найти абсолютную скорость и абсолютное ускорение точки M в момент времени t = 1 с.
Круглая пластина радиусом R = 60 см вращается вокруг неподвижной оси, перпендикулярной плоскости пластины и проходящей через точку О, лежащую на ее ободе, по закону φ = 4(t2 - t) рад (рис. 6.4). По ободу пластины движется точка М, положение которой определяется координатой S - АМ - πR(At2 - 2t3)/3 см.
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = 1 с.

Кольцо радиуса R = 15 см жестко соединено стержнем ДО с валом О, ось вращения которого перпендикулярна плоскости рисунка. Вал О вращается по закону φ = 3t2-4t. Из точки А по кольцу движется точка М так, что расстояние АМ изменяется по закону
s = AM = 20√3·π·sin(πt/3) см.
Определить абсолютное ускорение точки М в момент времени t1 = 4/3 с, если в этот момент кольцо расположено так, как указано на рисунке. Принять l = 20 см.

Определить скорость и ускорение точки М
В вагоне, движущимся по прямолинейному участку пути рельсу с ускорением а, подвешен стержень ОА, который совершает колебательное движение по закону φ=f(t) в вертикальной плоскости вокруг оси О, перпендикулярной к направлению движения вагона. Определить для указанного момента времени t абсолютное ускорение точки А стержня.