Артикул: 1037483

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название:Проверить действительно ли числа являются законом распределения. Построить многоугольник распределения вероятностей

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Проверить действительно ли числа являются законом распределения. Построить многоугольник распределения вероятностей

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Непрерывная случайная величина задана ее плотностью распределения. Найти параметр c, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [1; 2,5 ] и квантиль порядка 0,75.
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Произведено 400 испытаний. Найти вероятность того, что относительная частота появления события отклонится от его вероятности не более, чем на 0,09.
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
2x - y - z = 4
3x + 4y - 2z = 11
3x - 2y + 4z = 11

Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
Случайная величина X задана следующим законом распределения:

В круге радиуса R = 14 наудачу появляется точка. Определить вероятность того, что она попадает в одну из двух непересекающихся фигур, площади которых равны s1 = 2,6 и s2 = 1,8 Из отрезка (-1,2) наудачу взяты два числа. Какова вероятность, что их сумма больше единицы, а произведение меньше единицы?
В каждой из двух урн содержится по 6 белых и по 4 черных шара. Из первой урны наугад один шар переложили во вторую. Какова вероятность, что шар, наугад вытащенный из второй урны, будет черным?В одной урне 4 белых шара и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Вероятность того, что на один лотерейный билет выпадет выигрыш, равна 0,2. Куплено 5 билетов. Найти вероятность того, что
А) выиграют два билета;
Б) выиграют хотя бы три билета.
Электрическая цепь составлена из блоков по данной схеме. Найти вероятность разрыва цепи, если вероятность выхода из строя каждого блока p=0,2