Артикул: 1037355

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название:В случаях а, б, в рассматривается серия из n независимых опытов с двумя исходами в каждом – «успех» или «неуспех». Вероятность «успеха» равна р, «неуспеха» в каждом испытании. Х – число успехов в n испытаниях. Требуется:
1) для случая а (малого n) построить ряд распределения, функцию распределения Х, найти M[X] , D[X] и P(X ≤2 ) ;
2) для случая б (большого n и малого р) найти P(X ≤ 2) приближенно с помощью распределения Пуассона;
3) для случая в (большого n) найти вероятность P(k1 ≤ K ≤ k2) приближенно с помощью теоремы Муавра-Лапласа.
Дано: а) n = 5, p = 0,6; б) n = 50, p = 0,01; в) n = 400, p = 0,9, k1 = 350, k2 = 365.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Известно распределение системы двух дискретных величин (ξ, η).
Определить частные, условные (при ξ = 1, η = 0) распределения и числовые характеристики системы случайных величин mξ, Dξ, mη, Dη, Kξ,η,, rξ,η; а также найти вероятность попадания двумерной случайной величины (ξ, η) в область

В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
Игральная кость бросается три раза. Какова вероятность выпадения одной «шестерки»?Среди п лотерейных билетов k выигрышных. Наудачу взяли т билетов. Определить вероятность того, что среди них выигрышных.
n = 10, l = 5, m = 7, k = 7
В одной урне 4 белых шара и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
Случайная величина X задана следующим законом распределения:

Среднее число вызовов, поступающих на АТС в 1 мин, равно двум. Найти вероятность того, что за 2 мин поступит:
а) 5 вызовов;
б) менее пяти вызовов;
в) не менее пяти вызовов.
Предполагается, что поток вызовов – простейший.
Вероятность того, что на один лотерейный билет выпадет выигрыш, равна 0,2. Куплено 5 билетов. Найти вероятность того, что
А) выиграют два билета;
Б) выиграют хотя бы три билета.
Случайная величина Х имеет ряд распределения. Найти а, М(х), σ(х)
В типографии имеется 6 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,8. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше 4.