Артикул: 1037354

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название:Найти закон распределения, математическое ожидание и дисперсию случайной величины Х. Построить график функции распределения и найти вероятность события при следующих условиях. Одновременно бросаются 4 монеты. Х – число выпавших «орлов», К = 3.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Случайная величина Х имеет ряд распределения. Найти а, М(х), σ(х)
Заданы математическое ожидание α и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти: а) вероятность того, что X примет значение, принадлежащее интервалу (a, b); б) вероятность того, что абсолютная величина отклонения X – α окажется меньше d.
Дано: α = 6, s = 2, a = 4, b = 12, d = 4.
В одной урне 4 белых шара и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.Электрическая цепь составлена из блоков по данной схеме. Найти вероятность разрыва цепи, если вероятность выхода из строя каждого блока p=0,2
В круге радиуса R = 14 наудачу появляется точка. Определить вероятность того, что она попадает в одну из двух непересекающихся фигур, площади которых равны s1 = 2,6 и s2 = 1,8 Непрерывная случайная величина задана ее плотностью распределения. Найти параметр c, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [1; 2,5 ] и квантиль порядка 0,75.
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Произведено 400 испытаний. Найти вероятность того, что относительная частота появления события отклонится от его вероятности не более, чем на 0,09.Среди п лотерейных билетов k выигрышных. Наудачу взяли т билетов. Определить вероятность того, что среди них выигрышных.
n = 10, l = 5, m = 7, k = 7
Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО 35 . Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что событие наступит 60 раз в 100 испытаниях