Артикул: 1036732

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название:По данным таблицы (табл)
а) составить интервальный вариационный ряд с равными интервалами;
б) найти частоты и частости;
в) ряд распределения изобразить графически;
г) определить моду, медиану, среднее значение, дисперсию, среднее квадратическое отклонение, коэффициент вариации, сделать выводы по результатам расчетов;
д) на уровне значимости 0,05 проверить гипотезу о нормальном распределении случайной величины с помощью критерия Пирсона, построить кривую распределения СВ Х.

Описание:
Подробное решение в WORD - 5 страниц

Изображение предварительного просмотра:

По данным таблицы (табл) <br />а) составить интервальный вариационный ряд с равными интервалами; <br />б) найти частоты и частости; <br />в) ряд распределения изобразить графически; <br />г) определить моду, медиану, среднее значение, дисперсию, среднее квадратическое отклонение, коэффициент вариации, сделать выводы по результатам расчетов; <br />д) на уровне значимости 0,05 проверить гипотезу о нормальном распределении случайной величины с помощью критерия Пирсона, построить кривую распределения СВ Х.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти: а) вероятность того, что X примет значение, принадлежащее интервалу (a , b); б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
a=14; s=4; a=10; b=20; d=4.
Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
Случайная величина X задана следующим законом распределения:

Известно распределение системы двух дискретных величин (ξ, η).
Определить частные, условные (при ξ = 1, η = 0) распределения и числовые характеристики системы случайных величин mξ, Dξ, mη, Dη, Kξ,η,, rξ,η; а также найти вероятность попадания двумерной случайной величины (ξ, η) в область

Среди п лотерейных билетов k выигрышных. Наудачу взяли т билетов. Определить вероятность того, что среди них выигрышных.
n = 10, l = 5, m = 7, k = 7
Вероятность появления поломок на каждой из 5 соединительных линий равна 0,15. Какова вероятность того, что хотя бы две линии исправны?Две перфораторщицы набили по одинаковому комплекту перфокарт. Вероятность того, что первая перфораторщица допустит ошибку, равна 0,1; для второй перфораторщицы эта вероятность равна 0,2. При сверке перфокарт была обнаружена ошибка. Найти вероятность того, что ошиблась вторая перфораторщица.
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
2x - y - z = 4
3x + 4y - 2z = 11
3x - 2y + 4z = 11

Бросаются две игральные кости. Определить вероятность того, что:
а) сумма числа очков не превосходит N;
б) произведение числа очков не превосходит N;
в) произведение числа очков делится на N.
N=12
В круге радиуса R = 14 наудачу появляется точка. Определить вероятность того, что она попадает в одну из двух непересекающихся фигур, площади которых равны s1 = 2,6 и s2 = 1,8 В одной урне 4 белых шара и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.