Артикул: 1030826

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название:Решить задачу

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Решить задачу

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Совхоз для кормления животных использует два вида корма. В дневном рационе животного должно содержаться не менее 6 единиц питательного вещества и не менее 12 единиц питательного вещества . Какое количество корма надо расходовать ежедневно на одного животного, чтобы затраты были минимальными? Использовать данные таблицы
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на максимум и почему

В обработку поступили две партии досок для изготовления комплектов из трех деталей (треугольные каркасы настилов на стройплощадку), причем первая партия содержит 52 доски длиной по 6,5 м каждая, вторая содержит 200 досок длиной по 4 м каждая. Каждый комплект состоит из двух деталей по 2 м каждая и одной детали в 1,25 м.
Ставится задача поиска рационального варианта раскроя поступившего в обработку материала.
Симплекс-метод (реферат)Необходимо решить задачу линейного программирования
В двух пунктах отправления А и В находится соответственно 150 и 90 т горючего. В пункты 1,2,3 требуется доставить соответственно 60,70 и 110 т горючего. Стоимости перевозки тонны горючего из пункта А в пункты 1,2,3 составляют соответственно 6, 10 и 4 руб., а из пункта В - 12,2 и 8 руб. Составить оптимальный план перевозок горючего так, чтобы общая сумма транспортных расходов была наименьшей. Фирма производит товар двух видов в количествах x и y. Задана функция полных издержек C(x,y). Цены этих товаров на рынке равны P1 и P2. Определить, при каких объемах выпуска достигается максимальная прибыль, найти эту прибыль.
C(x,y) = 7x2 + 8xy + 3y2 + 90, P1 = 110, P2 = 70

Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия I вида расходуется 2 кг металла, а изделия II вида - 4 кг. Составить план производства, обеспечивающий получение наибольшей прибыли от продажи изделий, если отпускная стоимость одного изделия I вида составляет - 3 руб., а изделия II вида - 2 руб., причем изделий I вида требуется изготовить не более 40, а изделий II вида - не более 20Дать геометрическую интерпретацию следующих взаимно двойственных задач:
Исходная задача (I): найти неотрицательные значения (x1, x2) из условий x1 + 2x2 ≥ 4, x1 - x2 ≥ - 1 и минимизации линейной функции L = 3x1 + 2x2
Двойственная задача (I'): найти неотрицательные значения (y1, y2) из условий y1 + y2 ≤ 3, 2y1 - y2 ≤ 2 и максимизации линейной функции T = 4y1 - y2
Задана система ограничений: x1 + x2 + 2x3 - x4 = 3, x2 + 2x4 = 1 и линейная форма L = 5x1 - x3 . Найти оптимальное решение, минимизирующее линейную форму
Минимизировать линейную функцию L = 12x1 + 4x2 при ограничениях: x1 + x2 ≥ 2, x1 ≥ 1/2, x2 ≤ 4, x1 - x2 ≤ 0