Артикул: 1020104

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Дифференциальные уравнения (2399 шт.)

Название:Задача 3524 из сборника Демидовича
В уравнение положить

Поисковые тэги: Сборник Демидовича

Изображение предварительного просмотра:

Задача 3524 из сборника Демидовича<br />В уравнение положить

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить дифференциальное уравнение (√x + 1)·y' = 2
Линейные однородные дифференциальные уравнения второго порядка. Характеристическое уравнение. Виды общего решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами
(Ответ на теоретический вопрос – 1 страница Word)
Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.

Алгоритм решения дифференциальных уравнений, допускающие понижение порядка производной
(Ответ на теоретический вопрос – 1 страница Word)
Решить систему дифференциальных уравнений
Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Найти общее решение линейного дифференциального уравнения первого порядка методом Бернулли и методом Лагранжа. y'+ytg(x)=cos⁡(x)
Найти решение дифференциального уравнения y'=sin(x)+x.
Найти решение дифференциального уравнения (x + 1)dy=ydx
Найти решение дифференциального уравнения y''+y'-6y=0