Артикул: 1020049

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Дифференциальные уравнения (2399 шт.)

Название:Задача 3515 из сборника Демидовича
Приняв u и v за новые независимые переменные и ω=ω(u;v) за новую функцию. Преобразовать уравнение

Поисковые тэги: Сборник Демидовича

Изображение предварительного просмотра:

Задача 3515 из сборника Демидовича<br />Приняв  u и v за  новые независимые переменные и ω=ω(u;v) за новую функцию. Преобразовать уравнение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Решить систему дифференциальных уравнений
Решить уравнение
y + √(x2 + y2) - xy' = 0

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти общее решение линейного дифференциального уравнения первого порядка методом Бернулли и методом Лагранжа. y'+ytg(x)=cos⁡(x)
Решить дифференциальное уравнение y' = √(2x + 3y)
Решить дифференциальное уравнение первого порядка ydy - xydx=0
Найти частное решение дифференциального уравнения при данных начальных условиях
y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 1

Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5