Артикул: 1019992

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Дифференциальные уравнения (2399 шт.)

Название:Задача 3487 из сборника Демидовича
В выражении положить x=rcos(φ);y=rsin(φ)

Поисковые тэги: Сборник Демидовича

Изображение предварительного просмотра:

Задача 3487 из сборника Демидовича<br />В выражении положить x=rcos(φ);y=rsin(φ)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить дифференциальное уравнение (√x + 1)·y' = 2
Найти решение уравнения y' = 32x - 3y
Найти решение дифференциального уравнения y''' = 1/x
Найти решение дифференциального уравнения (x + 1)dy=ydx
Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.

Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Найти общее решение дифференциального уравнения
y'' + 4y' + 4y = 0

Найти решение системы линейных дифференциальных уравнений методом исключения.