Артикул: 1019981

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Дифференциальные уравнения (2399 шт.)

Название:Задача 3481 из сборника Демидовича
Преобразовать к полярным координатам r и φ полагая x=rcos(φ);y=rsin(φ) следующее выражение

Поисковые тэги: Сборник Демидовича

Изображение предварительного просмотра:

Задача 3481 из сборника Демидовича<br />Преобразовать к полярным координатам r и φ полагая x=rcos(φ);y=rsin(φ) следующее выражение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти частное решение дифференциального уравнения при данных начальных условиях
y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 1

Решить дифференциальное уравнение
(x+y)dx+(y-x)dy=0

Найти частные решения, удовлетворяющие начальным условиям:
−3y′′+9y′−6y=−4ex; y(0)=y′(0)=−4

Решить дифференциальное уравнение (√x + 1)·y' = 2
Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Решить дифференциальное уравнение первого порядка ydy - xydx=0
Найти общее решение дифференциального уравнения
y'' + 4y' + 4y = 0

Решить дифференциальное уравнение
y'' + 9y = 6e3x