Артикул: 1012165

Раздел:Технические дисциплины (95439 шт.) >
  Теоретические основы электротехники (ТОЭ) (12858 шт.) >
  Переходные процессы (1581 шт.) >
  постоянный ток (1302 шт.) >
  второго рода (661 шт.)

Название или условие:
Расчёт переходного процесса в цепи постоянного тока
В заданной RLC-цепи постоянного тока переходный процесс вызывается замыканием ключа.
РАССЧИТАТЬ:
а) переходные напряжение и ток конденсатора классическим методом;
б) переходный ток конденсатора операторным методом.
ИЗОБРАЗИТЬ на одном графике кривые uС(t) и iС(t). В случае апериодического процесса кривые построить в интервале 0…3τ1, где τ1 =1/|p1| , p1 - меньший по модулю корень характеристического уравнения. В случае колебательного процесса кривые построить в интервале 0…3(1/δ), где δ - вещественная часть комплексно-сопряжённых корней характеристического уравнения.
Во всех вариантах действует источник постоянной ЭДС E=100 В, индуктивность L=100 мГ.
Вариант задания указывается преподавателем или определяется двумя последними цифрами шифра студента.
Вариант 60
Номер схемы:20;
R1=50 Ом; R2=40 Ом;
C=240 мкФ; L=100 мГн;

Описание:
Подробное решение в WORD+файл MathCad с графиками+файл моделирования LTSpice

Поисковые тэги: Операторный метод, Классический метод, Spice (LTSpice)

Изображение предварительного просмотра:

<b>Расчёт переходного процесса в цепи постоянного тока </b> <br />В заданной RLC-цепи постоянного тока переходный процесс вызывается замыканием ключа. <br />РАССЧИТАТЬ: <br />а) переходные напряжение и ток конденсатора классическим методом;  <br />б) переходный ток конденсатора операторным методом. <br />ИЗОБРАЗИТЬ на одном графике кривые uС(t) и iС(t). В случае апериодического процесса кривые построить в интервале 0…3τ1,  где τ1 =1/|p1| , p1 - меньший по модулю корень характеристического уравнения. В случае колебательного процесса кривые построить в интервале 0…3(1/δ), где δ - вещественная часть комплексно-сопряжённых корней характеристического уравнения. <br />Во всех вариантах действует источник постоянной ЭДС E=100 В, индуктивность L=100 мГ. <br />Вариант задания указывается преподавателем или определяется двумя последними цифрами шифра студента.<br /> <b>Вариант 60</b><br /> Номер схемы:20; <br />R1=50 Ом; R2=40 Ом; <br />C=240 мкФ; L=100 мГн;

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Дана электрическая цепь, в которой происходит коммутация. В цепи действует постоянная ЭДС Е. Требуется определить закон изменения во времени тока после коммутации в одной из ветвей схемы или напряжения на каком-либо элементе или между заданными точками схемы.
Задачу следует решать двумя методами: классическим и операторным. На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени в интервале от t = 0 до t = 3/|p|min , где |p|min – меньший по модулю корень характеристического уравнения.
Вариант 23

Расчет переходного процесса в цепи постоянного тока
В заданной RLC-цепи постоянного тока переходный процесс вызывается замыканием ключа.
Рассчитать:
а) переходные напряжение и ток конденсатора классическим методом;
б) переходный ток конденсатора операторным методом.
Изобразить на одном графике кривые uС(t) и iС(t). В случае апериодического процесса кривые построить в интервале 0…3τ1, где τ1 =1/|p1| , p1 - меньший по модулю корень характеристического уравнения. В случае колебательного процесса кривые построить в интервале 0…3(1/δ), где δ - вещественная часть комплексно-сопряжённых корней характеристического уравнения.
Во всех вариантах действует источник постоянной ЭДС E=100В, индуктивность L=100мГ.
Требуется найти: напряжение на конденсаторе uC(t) и ток через него iC(t) .
Вариант 94

Задание к задаче 3:
1. Рассчитать классическим методом ток и напряжение в элементе схемы, указанным пятым символом кода задания, для двух схем, соответствующих двум положениям работающего ключа, при условии, что к моменту коммутации в цепи наступает установившийся процесс.
2. Рассчитать операторным методом законы изменения тех же переменных. Сравнить полученные выражения с результатами расчетов классическим методом, убедиться в их совпадении.
3. Построить графики рассчитанных токов и напряжений в переходных процессах на одном рисунке, причем график процесса после второго переключения должен быть продолжением во времени графика после первого переключения.
4. Рассчитать методом переменных состояния законы изменения напряжения на емкостном элементе и тока в индуктивном элементе в переходных режимах после двух коммутаций. Построить графики временных зависимостей, используя при численном интегрировании дифференциальных уравнений одну из систем математических расчетов на ПК (MathCad или др.)
5. Сравнить результаты, полученные в пп. 2, 3 и 4. Сделать выводы.
Вариант 87 (Шифр: 5.2.2.3.L )

Дана электрическая цепь, в которой происходит коммутация. В цепи действует постоянная ЭДС Е. Требуется определить закон изменения во времени тока после коммутации в одной из ветвей схемы или напряжения на каком-либо элементе или между заданными точками схемы.
Задачу следует решать двумя методами: классическим и операторным. На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени в интервале от t = 0 до t = 3/|p|min , где |p|min – меньший по модулю корень характеристического уравнения.
Вариант 29

Расчет переходного процесса в цепи постоянного тока
В заданной RLC-цепи постоянного тока переходный процесс вызывается замыканием ключа.
Рассчитать:
а) переходные напряжение и ток конденсатора классическим методом;
б) переходный ток конденсатора операторным методом.
Изобразить на одном графике кривые uС(t) и iС(t). В случае апериодического процесса кривые построить в интервале 0…3τ1, где τ1 =1/|p1| , p1 - меньший по модулю корень характеристического уравнения. В случае колебательного процесса кривые построить в интервале 0…3(1/δ), где δ - вещественная часть комплексно-сопряжённых корней характеристического уравнения.
Во всех вариантах действует источник постоянной ЭДС E=100В, индуктивность L=100мГ.
Требуется найти: напряжение на конденсаторе uC(t) и ток через него iC(t) .
Вариант 90

Дана электрическая цепь, в которой происходит коммутация. В цепи действует постоянная ЭДС. Параметры цепи приведены в таблице 1. Схема электрической цепи изображена на рисунке 1.
Определить:
1. Ток IR(t) в резисторе R1 при переходном процессе, вызванном размыканием ключа.
2. Напряжение uL(t) на индуктивности при переходном процессе, вызванном размыканием ключа.
Вариант 18

1. На откидном листе изобразить электрическую цепь, подлежащую расчету, привести численные значения параметров и задающих источников тока и напряжения.
2. Рассчитать указанный преподавателем ток или напряжение в одной из ветвей классическим методом.
3. Составить эквивалентную операторную схему и записать для нее систему уравнений по законам Кирхгофа. Рассчитать искомый ток операторным методом.
4. Получить матрицы связей А, В, С, D исследуемой цепи для решения задачи методом пространства состояний.
5. Построить графики изменения во времени найденных величин.
Вариант 04 (граф «г», искомая величина I4)
M=8 N=2

Дана электрическая цепь, в которой происходит коммутация. В цепи действует постоянная ЭДС Е. Требуется определить закон изменения во времени тока после коммутации в одной из ветвей схемы или напряжения на каком-либо элементе или между заданными точками схемы.
Задачу следует решать двумя методами: классическим и операторным. На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени в интервале от t = 0 до t = 3/|p|min , где |p|min – меньший по модулю корень характеристического уравнения.
Вариант 8

Дано:
R1 = 15 Ом, R2 = 20 Ом, R3 = 15 Ом.
L = 15 мГн, С = 12 мкФ.
U0 = 20 B
Найти: iR2(t)-?
В момент времени 0 в цепи, подключенной к источнику постоянного напряжения U, происходит коммутация.
Рассчитать заданное значение переходной величины классическим методом.

Расчет переходного процесса в цепи постоянного тока
В заданной RLC-цепи постоянного тока переходный процесс вызывается замыканием ключа.
Рассчитать:
а) переходные напряжение и ток конденсатора классическим методом;
б) переходный ток конденсатора операторным методом.
Изобразить на одном графике кривые uС(t) и iС(t). В случае апериодического процесса кривые построить в интервале 0…3τ1, где τ1 =1/|p1| , p1 - меньший по модулю корень характеристического уравнения. В случае колебательного процесса кривые построить в интервале 0…3(1/δ), где δ - вещественная часть комплексно-сопряжённых корней характеристического уравнения.
Во всех вариантах действует источник постоянной ЭДС E=100В, индуктивность L=100мГ.
Требуется найти: напряжение на конденсаторе uC(t) и ток через него iC(t) .
Вариант 97 (схема 13)