Артикул: 1011575

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Дискретная математика (330 шт.)

Название:На множестве M = {5,6,7,8} задано отношение R = {(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)}. Выяснить, является ли это отношение отношением эквивалентности, отношением частичного порядка, отношением строгого порядка или отношением линейного порядка.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Дано множество A и бинарное отношение R ⊂ A x A.
4.1. Найти его область определения и область значения отношения R.
4.2. Построить граф отношения R.
4.3. Проверить, является ли отношение R:
А. Рефлексивным.
Б. Симметричным.
В. Транзитивным.
R = {(1,2), (2,3), (4,5), (3,2), (1,3)}, A = {1,2,3,4,5}

Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.
Построить СДНФ функции
Описать элементы множества M, которое задано такой порождающей процедурой:
1. 3 ∈ M ; 2. Если элемент x∈M , то 3x∈M .
3. Множество M – является подмножеством любого множества A , удовлетворяющего условиям №1 и №2.
Доопределить функции f(x,y,z), g(x,y,z), h(x,y,z) так, чтобы f ∈ M, g ∈ L, h ∈ S. Если построение какой-либо функции невозможно, докажите это. Выясните вопрос о принадлежности построенных функций к классам T0 и T1.
Для отношения, заданного матрицей, определить является ли оно отношением эквивалентности

Доказать равенства, используя свойства операций над множествами и определения операций.
Можно ли из функции f(x,y,z) с помощью суперпозиций получить g(x,y,z)?
На множестве M Бинарное отношение RÍ M´M Задано характеристическим свойством. Представить отношение R Другими возможными способами. Выяснить какими свойствами оно обладает.
1. Для функций f(x,y,z) и g(x,y,z) выяснить вопрос об их принадлежности к классам T0, T1, L, S, M.
2. В случае, если некоторая функция представляет из себя функционально полный класс, выразить из неё с помощью суперпозиций константы 0,1, отрицание и конъюнкцию xy.
3. В случае, если некоторая функция представляет из себя функционально полный в слабом смысле класс, выразить из неё с помощью суперпозиций и фиксирования переменных отрицание и конъюнкцию ху.
4. Полученные результаты проверить с помощью построения таблиц.