Артикул: 1011570

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Дискретная математика (330 шт.)

Название:В военном подразделении служат 12 офицеров и 13 рядовых оперативная группа состоит из командира, заместителя и 10 рядовых, причём командир и заместитель назначаются случайным образом из числа офицеров. Найти число возможных различных оперативных групп.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Дано бинарное отношение R. Найти R-1, R∘R, R∘R-1,R-1∘R,
R = {(x,y):x,y ∈ Z, x+3y=0}

Дано множество A и бинарное отношение R ⊂ A x A.
4.1. Найти его область определения и область значения отношения R.
4.2. Построить граф отношения R.
4.3. Проверить, является ли отношение R:
А. Рефлексивным.
Б. Симметричным.
В. Транзитивным.
R = {(1,2), (2,3), (4,5), (3,2), (1,3)}, A = {1,2,3,4,5}

1. Для заданной функции найти полином Жегалкина. Решение представить двумя способами.
2. Найти СНДФ.
3. Найти СНКФ.

Доказать равенства, используя свойства операций над множествами и определения операций.
Записать множество A = {x|x ∈ Z∧x2 < 10} перечислением элементов.
Можно ли из функции f(x,y,z) с помощью суперпозиций получить g(x,y,z)?
Доопределить функции f(x,y,z), g(x,y,z), h(x,y,z) так, чтобы f ∈ M, g ∈ L, h ∈ S. Если построение какой-либо функции невозможно, докажите это. Выясните вопрос о принадлежности построенных функций к классам T0 и T1.
Является ли второе суждение логическим следствием первого:
А: Если существительное является в предложении подлежащим, то оно стоит в именительном падеже.
В: Если существительное не является в предложении подлежащим, то оно не стоит в именительном падеже.
Машина Тьюринга (курсовая работа)
Целью данной работы является изучение и создание - „Машины Тьюринга”, которая решает задачу “Возведение в степень в унарной системе счисления”.
Для заданных функций f(x,y,x,), g(x,y,z,w) и h(x,y,z,w,t):
- запишите их представление в алгебраической форме;
- с помощью карт Карно найдите их минимальные ДНФ и КНФ;