Артикул: 1010134

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Дискретная математика (330 шт.)

Название:Построить наиболее экономичную логическую схему, функция проводимости которой удовлетворяет заданным условиям.

Изображение предварительного просмотра:

Построить наиболее экономичную логическую схему, функция проводимости которой удовлетворяет заданным условиям.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Доопределить функции f(x,y,z), g(x,y,z), h(x,y,z) так, чтобы f ∈ M, g ∈ L, h ∈ S. Если построение какой-либо функции невозможно, докажите это. Выясните вопрос о принадлежности построенных функций к классам T0 и T1.
1. Для заданной функции найти полином Жегалкина. Решение представить двумя способами.
2. Найти СНДФ.
3. Найти СНКФ.

Можно ли из функции f(x,y,z) с помощью суперпозиций получить g(x,y,z)?
Минимизировать с помощью карт Карно двоичную функцию от 4-х переменных, заданную своими значениями на наборах
Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.
Построить СДНФ функции
Напишите СДНФ булевой функции, заданной следующей таблицей истинности, а затем упростите получившуюся ДНФ (используя логические эквивалентности)
Записать булеан множества A = {− 5, 10, 9}
Докажите тождество:
Дано бинарное отношение R. Найти R-1, R∘R, R∘R-1,R-1∘R,
R = {(x,y):x,y ∈ Z, x+3y=0}