Артикул: 1008995

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название:Задача 16.16 из сборника Кузнецова.
Тело V задано ограничивающими его поверхностями, μ - плотность. Найти массу тела:

Поисковые тэги: Задачник Кузнецова

Изображение предварительного просмотра:

Задача 16.16 из сборника Кузнецова. <br /> Тело V задано ограничивающими его поверхностями, μ - плотность. Найти массу тела:

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти поверхностный интеграл 2-го рода, где замкнутая поверхность σ состоит из внешней стороны части поверхности параболоида σ1: x2 + y2 = 4 - z, z ≥ 0 а также из части плоскости σ2: z = 0
Найти объем тела, ограниченного поверхностями x2 + y2 + z2 = 5, z ≥ x2 + y2 + 1
Вычислить площадь части сферы x2 + y2 + z2 = 16 , вырезанной цилиндром x2 + y2 = 4y и плоскостью x = 0, x ≥ 0, z ≥ 0Вычислить двойной интеграл по области, ограниченной линиями: y = x3, x + y = 2, x = 0
Найти массу неоднородной пластины D: x = 0, y = 0, x + y = 1, если поверхностная плотность в каждой ее точке μ(x,y) = x2Вычислить криволинейный интеграл по дуге синусоиды y = sin(x) от x = π до x = 0.
Вычислить двойной интеграл по области, ограниченной линиями: х = y, x + y = 2, x = 0
Записать двойной интеграл в виде повторного и изменить порядок интегрирования, если область интегрирования D: y = x2, y = 2 - x, x ≥ 0
Вычислить непосредственно и с помощью формулы Грина, где L - парабола y = x2 и хорда y = 4
Найти момент инерции однородного тела относительно оси Ох, занимающего область V: x = y2 + z2, x = 2