Артикул: 1008992

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название:Задача 15.15 из сборника Кузнецова.
Найти объем тела, заданного неравенствами:

Поисковые тэги: Задачник Кузнецова

Изображение предварительного просмотра:

Задача 15.15 из сборника Кузнецова. <br /> Найти объем тела, заданного неравенствами:

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Вычислить двойной интеграл: ∬4y2sin⁡xy dxdy D:x=0,y=√(π/2),y=x
Найти координаты центра масс однородного тела, ограниченного поверхностями:
y=3√(x2+z2), x2+z2=62 , y=0

Вычислить данные криволинейные интегралы, где LAB – отрезок прямой, заключенный между точками А(1, 2) и B(3, 5).
Вычислить криволинейный интеграл по замкнутому контуру L (обход контура L против часовой стрелки) двумя способами: непосредственно и по формуле Грина
L: x2 + y2 = 4, P = y2 + x, Q = x2 + y

Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ= μ(x, y)
D: x = 0, y = 3x, x + y = 3, μ = 3 – x – y

Вычислить с помощью тройного интеграла объем области T, ограниченной указанными поверхностями x+y+z+3=0,x=0,y=0,z=0
С помощью тройного интеграла вычислить объем тела V, переходя к цилиндрическим или сферическим координатам.
x2 + y2 ≤ 1, z ≥ 0
x2 + y2 + z2 ≤ 9

Найти работу A по перемещению материальной точки вдоль кривой L под действием силы
F =P(x,y) i +Q(x,y)j, P=xy+x2+y, Q=xy+x2-y L:прямоугольник с вершинами A(0;-2),B(1;-2),C(1;3),D(0;3)

Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты
D: x2 + y2 – 2ax = 0, x – y ≤ 0, Oy

Вычислить поверхностный интеграл первого рода по поверхности S, где S – часть плоскости (p), отсеченная координатными плоскостями.
(p): x – y + z = 2